以321型不锈钢为实验材料,利用伪原位观察技术研究了300~4 K连续冷却过程中低应变预变形对变温马氏体相变行为的影响规律及作用机制。结果表明,在连续冷却过程中,低应变预变形提高了马氏体相变开始温度和最终的马氏体转变量,同时也加速了整个连续冷却过程中的马氏体相变。通过伪原位观察揭示了预变形引入的滑移带能有效地提供温度诱发ε-马氏体相变的形核质点,促进ε-马氏体转变,进而提高连续冷却过程中α'-马氏体相变的形核质点数量,促进α'-马氏体相变,完善了预变形引入的位错缺陷直接提供α'-马氏体相变的形核质点,促进α'-马氏体相变这一理论。此外,通过对滑移带缺陷的形核行为和形核优先性分析,揭示形变引入的滑移带与温度诱发的缺陷奥氏体具有相同的形核行为,但预变形引入的滑移带具有更高的形核优先性。同时对预变形试样中α'-马氏体的晶体学特征分析发现,滑移带能有效地改变α'-马氏体的变体选择,进而改变α'-马氏体的相变织构。
引入分形维数和比表面积对GCr15轴承钢连铸方坯的凝固组织整体形貌特征进行定量描述,并基于此计算枝晶通道的渗透率。结果表明,分形维数可描述凝固组织形貌的自相似复杂程度,比表面积可描述凝固组织的粗化程度。与高过热度(35℃)相比,低过热度(20℃)下生产的铸坯其分形维数较小,比表面积较大,且等轴晶区的渗透率较小;即低过热度时富集溶质的液相在枝晶间的流动阻力大,更有利于铸坯宏观偏析缺陷的控制。此外,为有效抑制高过热度时铸坯宏观偏析缺陷的形成,应在尽可能保证等温凝固的条件下通过调节工艺参数增大铸坯等轴晶区的冷却速率。
采用原位中子衍射分析技术测试了板条马氏体钢的拉伸塑性行为,采用Z-Rietveld和卷积多重全曲线拟合方法对衍射数据进行拟合分析。板条马氏体内的位错为刃、螺型位错的混合位错,并呈现随机分布特征。马氏体的加工硬化需要同时考虑位错密度和位错类型2个因素的作用。随着拉伸应变量的增加,螺型位错数量减少,刃型位错数量增加,总位错密度增加。硬取向板条束内位错密度增加,呈现加工硬化特征;软取向板条束内位错密度降低,出现加工软化特征。外加应力在硬取向和软取向板条束内产生应力再分配,变形后在板条束内形成长程内应力。
提出了一种基于斜轧原理的块体超细晶棒材剧烈塑性变形(SPD)成形法,称为3D-SPD法:利用特殊曲面锥形轧辊及导板,坯料从轧辊直径最大端咬入,采用超大送进角及径缩率等变形参数,构建了剧烈扭转压缩复合变形区,单位成形载荷为兆帕级,可实现块体等效应变大于6.5的SPD。建立了基于Oyane损伤准则的裂纹萌生控制模型,通过对不同变形条件下轧件心部损伤值的优化,有效抑制了Mannesmann效应(ME),避免了裂纹的萌生。理论及实验证明:当辊面锥角5°、送进角24°、径缩率50%、温度700℃、椭圆度系数1.02以及轧辊转速40 r/min时,采用单道次轧制方式,可将直径50 mm的45钢轧制为直径25 mm的超细晶棒材,平均晶粒尺寸从46 μm细化至约1 μm,屈服强度和抗拉强度分别提升46%和42%。
采用激光选区熔化制备了致密度达99.63%、力学性能良好的AlSi10Mg样品,对比分析了不同热处理工艺对样品平行于基板方向组织与性能的影响。结果表明,沉积态样品水平方向的抗拉强度可达478 MPa,延伸率约8%,平均硬度约122 HV。为进一步提高样品延伸率,选取了不同热处理工艺进行组织调控。发现各热处理样品塑性均有一定程度提高,但强度变化差异较大。经540℃、1 h固溶处理后,样品中的网状Si组织已完全消失,强度降至约246 MPa,但延伸率超过了22%;经236℃、10 h去应力退火处理后,网状Si出现球化现象,抗拉强度下降至368 MPa,延伸率约为17%;而经130℃、4 h的时效后,熔池仍然保留完整的网状Si结构,在保持高强度的同时,塑性提高到约11.9%,平均硬度也增至约133 HV,与沉积态相比提升了10%。对比发现,低温短时间的时效热处理可以使样品保留打印过程中因快速冷却而形成的细晶组织,同时促进沉淀相的析出及网状Si的少量球化,从而使得时效样品获得了最优的综合力学性能。
利用XRD、SEM、EBSD、XPS和动电位极化、EIS技术、半电池及全电池恒流放电等方法,系统地研究了微观组织特征对镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In (质量分数,%) 合金放电性能和电化学行为的影响。结果表明,挤压态合金主要由完全动态再结晶晶粒组成,平均晶粒尺寸为(10.92 ± 0.23) μm。织构成分主要由基极从法线方向至挤压方向偏转45°~60°的非基面织构组成。合金主要包含α-Mg、纳米级Mg3Bi2相和微米级Mg2Bi2Ca相。在半电池测试中,挤压态合金在10 mA/cm2的电流密度下显示出平稳的放电过程和较负的放电电位(-1.622 V)。此外,基于挤压态合金为阳极的镁空气电池展现出较高的电池电压和功率密度,在120 mA/cm2的电流密度下电池电压和峰值功率密度分别为0.72 V和86.4 mW/cm2,这明显高于AZ31、AM50等商用镁空气电池用阳极材料的性能。该合金优异的放电性能主要归因于电极表面金属In的重新沉积、弱的织构强度、均匀的微观组织以及疏松且薄的放电产物膜。
提出了一种简单的高熵合金加工工艺,即对Fe-Mn系高熵合金采用中等形变量冷轧和中温短时退火相结合的方法,获得了由晶粒尺寸为数十微米的形变晶粒和超细尺度再结晶晶粒组成的非均匀结构。通过向合金中同时引入由高密度位错、晶粒细化、析出相、ε-马氏体、α-马氏体和回复孪晶等微观结构特征及变形过程中持续发生的形变孪生、ε-马氏体相变引起的多种强化机制,使屈服强度较充分再结晶态显著提升并达到825 MPa。同时,在塑性变形过程中由于发生了显著的形变孪生和一定的由形变诱发的奥氏体向ε-马氏体转变,合金仍具有约28.6%的均匀延伸率,合金的综合力学性能得到有效提升。该工艺为优化以fcc结构为主的低层错能合金的力学性能提供了新思路。
采用GH3625合金铸态管坯及均匀化态管坯进行相同工艺热挤压管材制备实验,均匀化态管坯能成功挤出,而铸态管坯出现管爆裂现象。通过OM、SEM等手段观察了GH3625合金铸态及均匀化态组织、热挤压成形管材组织、爆裂管材组织及断口形貌,结合EDS分析,研究了GH3625合金管爆裂行为。结果表明,铸态管坯中存在较多的Laves相,经均匀化处理后Laves相和微观偏析基本消除;铸态管坯在热挤压过程中绝热升温导致Laves相回熔是造成管爆裂的主要原因;管爆裂的开裂方式为脆性断裂和韧性断裂相结合的准解理断裂,其中脆性断裂占主导地位。
利用团簇式方法,通过对Fe-Cr-Ni合金进行成分精修,在保持合金良好耐蚀性的同时,提升不锈钢的导电性。首先,解析316L不锈钢的成分,获得其Fe-Cr-Ni基础成分的理想团簇式[Ni-Fe11Ni1]Cr3,进而,固定Cr3,将Ni含量(质量分数)从6.63%变到32.74%,得到符合团簇成分通式[Ni-Fe13-xNix-1]Cr3 = Fe13-xNixCr3 (x = 1~5)的合金成分。利用真空电弧熔炼并铜模浇注成直径10 mm试棒,随后进行固溶及水淬处理。实验结果表明,在模拟双极板服役环境(0.5 mol/L H2SO4 + 2 × 10-6 HF)下,随着Ni含量提高,在酸钝化后,自腐蚀电流密度由14.39 μA/cm2降低至1.10 μA/cm2,在电化学氮化后,由1.03 μA/cm2降低至0.29 μA/cm2。这些数据均优于参照合金316L不锈钢(分别为7.51和0.47 μA/cm2),甚至低于0.5 μA/cm2的目前产业目标。在0.064 MPa压力下接触电阻逐渐减小(酸钝化后,从1.16 Ω·cm2减至0.98 Ω·cm2,电化学氮化后,从1.07 Ω·cm2减至1.03 Ω·cm2),优于316L不锈钢的1.1 Ω·cm2。上述实验结果表明,Ni含量的持续添加能够提升合金作为双极板的使役性能,最佳的不锈钢成分配方为 [Ni-Fe10Ni2]Cr3,可以作为替代316L的新型不锈钢。电化学氮化处理方法在提升合金耐蚀性的同时,保持了相当高的接触电阻,是较好的不锈钢双极板表面处理方法。
采用钨极惰性气体保护焊(TIG)电弧增材制造工艺制备5356铝合金成形件,并对成形件的组织和力学性能进行研究。结果表明,5356铝合金增材制造的相组成为α-Al基体和β(Al3Mg2)相;随沉积高度增加,沉积层显微组织由等轴晶向柱状晶转变,达到热平衡状态后趋于稳定,这是因为增材制造具有热积累效应;最顶层组织呈现树枝状,且Mg元素偏析严重;中下部组织形态多样,包括等轴晶组织、柱状晶组织及其混合组织,同时Mg元素偏析得到改善。力学性能测试结果显示,随沉积高度的增加,层内显微硬度先降低后趋于稳定,这是因为沉积层组织在增材制造过程中经历逐渐粗化的过程,导致显微硬度下降,达到热平衡状态后显微组织相对稳定,显微硬度也趋于稳定。沉积层层间位置的硬度大于层内,这是因为层间结合处为细小的等轴晶组织。聚集在层间的气孔可能是导致薄壁件屈服强度低于理论计算值的原因。抗拉强度、屈服强度以及伸长率都表现了各向异性,横向拉伸性能优于纵向,这是因为薄壁件层间气孔聚集以及显微组织不均匀。
在Zr60Cu40单相非晶合金中引入与合金次要组元Cu具有正混合焓的Fe元素,设计了Zr60Cu40-xFex相分离非晶合金,研究了Zr60Cu40-xFex三元合金的液-液相分离行为。结果表明,二元Cu-Fe合金的液态组元不混溶区域可以延伸至三元Zr60Cu40-xFex合金中;在快速凝固条件下,该合金在冷却过程中会发生液-液相分离,形成富Cu和富Fe两液相;基于Zr60Cu40-xFex合金液-液相分离凝固特征,考察了Fe含量对Zr60Cu40-xFex合金组织及相结构的影响,讨论了Zr60Cu40-xFex体系组织演变及相形成机制。Zr60Cu20Fe20合金在冷却过程中液-液相分离形成的富Zr-Cu和富Zr-Fe两液相分别发生玻璃转变,最终形成了高数量密度(1024/m3数量级)的纳米富Cu非晶粒子(尺寸为2~10 nm)分布在富Fe非晶基体上的相分离非晶合金组织。研究了该合金样品的电阻性能和纳米压痕行为,讨论了Zr60Cu20Fe20合金晶化过程的电阻反常变化行为,并分析了Zr60Cu20Fe20合金的纳米尺度相分离组织结构对剪切转变区的影响。
采用真空电弧离子镀工艺制备了NiCrAlYSi涂层,研究了NiCrAlYSi涂层表面喷丸处理对其恒温氧化行为的影响。结果表明,喷丸处理工艺可降低涂层表面粗糙度,提高涂层表面致密性和平整性。在恒温氧化过程中,经过喷丸处理后的涂层能减少O原子向内扩散从而避免异常氧化区的出现,同时形成的热生长氧化(TGO)层厚度更加均匀,通过0.4 MPa、5 min喷丸处理后,NiCrAlYSi涂层TGO层厚度生长速率较未喷丸处理涂层降低60%,抗氧化性能得到提高。
基于等离子弧和熔池的数值模拟,研究了热导型等离子弧焊的电弧物理特性和熔池动态行为,并使用光谱诊断、熔池红外热成像和示踪粒子检测对数值模拟结果进行了实验验证。结果表明,在热导型等离子弧焊中,等离子体向下冲击熔池表面后,向熔池边缘流动。在熔池内部存在2个相反的涡流,熔池中心的逆时针涡流由电弧压力、Marangoni力和Lorentz力驱动,而熔池尾部的顺时针涡流则由电弧剪切力、Marangoni力和浮力驱动。此外,热导型等离子弧焊中的熔池温度高于小孔型等离子弧焊,这是由热导型等离子弧焊中等离子弧能量密度相对较高,熔池内部对流相对较弱导致的。