Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 641-650    DOI: 10.11900/0412.1961.2020.00264
  研究论文 本期目录 | 过刊浏览 |
Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响
陈建军1, 丁雨田1(), 王琨2, 闫康1, 马元俊1, 王兴茂1, 周胜名3
1.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2.中核四〇四有限公司 嘉峪关 735100
3.金川集团股份有限公司 镍钴资源综合利用国家重点实验室 金昌 737100
Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion
CHEN Jianjun1, DING Yutian1(), WANG Kun2, YAN Kang1, MA Yuanjun1, WANG Xingmao1, ZHOU Shengming3
1.State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.The 404 Company Limited, China National Nuclear Industry Corporation, Jiayuguan 735100, China
3.State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Company Limited, Jinchang 737100, China
引用本文:

陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
Jianjun CHEN, Yutian DING, Kun WANG, Kang YAN, Yuanjun MA, Xingmao WANG, Shengming ZHOU. Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion[J]. Acta Metall Sin, 2021, 57(5): 641-650.

全文: PDF(30390 KB)   HTML
摘要: 

采用GH3625合金铸态管坯及均匀化态管坯进行相同工艺热挤压管材制备实验,均匀化态管坯能成功挤出,而铸态管坯出现管爆裂现象。通过OM、SEM等手段观察了GH3625合金铸态及均匀化态组织、热挤压成形管材组织、爆裂管材组织及断口形貌,结合EDS分析,研究了GH3625合金管爆裂行为。结果表明,铸态管坯中存在较多的Laves相,经均匀化处理后Laves相和微观偏析基本消除;铸态管坯在热挤压过程中绝热升温导致Laves相回熔是造成管爆裂的主要原因;管爆裂的开裂方式为脆性断裂和韧性断裂相结合的准解理断裂,其中脆性断裂占主导地位。

关键词 GH3625合金热挤压管材微观组织Laves相管爆裂    
Abstract

GH3625 superalloy is a type of solid-solution strengthened nickel-based wrought superalloy having Mo and Nb as the main strengthening elements. Because of its excellent high-temperature mechanical properties and oxidation resistance below 650 oC, it can be used in harsh stress and atmosphere environments. It is mainly used as a pipe material for aeroengine fuel main pipe, nuclear power steam generator heat transfer pipe, and pressure pipe, etc. Owing to the high alloying degree of nickel-based superalloys, large deformation resistance, and narrow thermal processing temperature range, the pipe preparation process is complicated. In this study, the as-cast and homogenized pipe billets were used for a short-flow hot extrusion pipe preparation test using the same process. The homogenized pipe billet was extruded successfully, and the pipe burst occurred during the extrusion of the as-cast billet. The pipe burst behavior was studied by OM, SEM, and EBSD, with an EDS analysis. The results showed a considerable amount of Laves phases in the as-cast pipe billet, and the Laves phases and micro-segregation were essentially eliminated after homogenization. Adiabatic heating of the as-cast pipe billet leads to the Laves phase remelting during the hot extrusion process, which is the main reason for pipe bursting during a hot extrusion process. The cracking mode of the pipe burst is a quasi-cleavage fracture, combining brittle fracture and ductile fracture with the predominance of the brittle fracture.

Key wordsGH3625 superalloy    hot extruded pipe    microstructure    Laves phase    pipe burst
收稿日期: 2020-07-17     
ZTFLH:  TG379  
基金资助:国家重点研发计划项目(2017YFA0700703);国家自然科学基金项目(51661019);甘肃省科技重大专项项目(145-RTSA004);镍钴资源综合利用国家重点实验室基金项目(301170503);兰州理工大学红柳一流学科建设计划项目
作者简介: 陈建军,男,1993年生,博士生
图1  GH3625合金管材热挤压实验过程示意图
图2  GH3625合金管坯铸态及均匀化态组织的OM [ 8, 25]和SEM像
图3  GH3625合金热挤压成形管材及爆裂管的EBSD像和OM像
图4  GH3625合金爆裂管壁条状组织的SEM像和EDS分析(a) burst pipe wall(b) a small amount of precipitated phase and EDS analyses of points 1 and 2 (insets) ( w—mass fraction, σ—standard deviation) (c) a large amount of precipitated phase
图5  图4c中方框区域条状组织的SEM像和EDS面扫描
图6  GH3625合金爆裂管材裂纹的SEM像及EDS线扫描
图7  图6c中方框区域裂纹终端的SEM像和EDS面扫描
图8  GH3625合金爆裂管材断口形貌的SEM像(a-c) fractographs (d-f) over-burnt fractographs (g, h) remelted zone fractographs (i) spherical particles at crack source in elliptical area
1 Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 1
1 郭建亭. 高温合金材料学 (上册) [M]. 北京: 科学出版社, 2008: 1
2 Shi C X, Zhong Z Y. Fifty Years Development of Superalloy in China [M]. Beijing: Metallurgical Industry Press, 2006: 1
2 师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 1
3 Gao Y B, Ding Y T, Chen J J, et al. Evolution of microstructure and texture during cold deformation of hot-extruded GH3625 alloy [J]. Acta Metall. Sin., 2019, 55: 547
3 高钰璧, 丁雨田, 陈建军等. 挤压态GH3625合金冷变形过程中的组织和织构演变 [J]. 金属学报, 2019, 55: 547
4 Dang L, Yang H, Guo L G, et al. DRX rules during extrusion process of large-scale thick-walled Inconel 625 pipe by FE method [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3037
5 Tian D. Development and production of high-temperature alloy seamless tubulars [J]. Steel Pipe, 2002, 31( 3): 1
5 田 党. 高温合金无缝管材的研制与生产 [J]. 钢管, 2002, 31( 3): 1
6 Zou Z H. Development of domestic manufacturing technologies for stainless steel tubes and gap with similar technologies developed overseas [J]. Steel Pipe, 2000, 29( 6): 7
6 邹子和. 我国不锈钢管生产技术的进展及其与国外的差距 [J]. 钢管, 2000, 29( 6): 7
7 Li D F, Wu Z G, Guo S L, et al. Study on the processing map of GH625 Ni-based alloy deformed at high temperature [J]. Rare Met. Mater. Eng., 2012, 41: 1026
7 李德富, 吾志岗, 郭胜利等. GH625镍基合金高温塑性变形加工图研究 [J]. 稀有金属材料与工程, 2012, 41: 1026
8 Ding Y T, Chen J J, Li H F, et al. Study on processing map of homogenized GH3625 superalloy and its tube manufacturing by short-flow hot extrusion [J]. Mater. Rev., 2019, 33: 2753
8 丁雨田, 陈建军, 李海峰等. 均匀化态GH3625合金热加工图及短流程热挤压管材研究 [J]. 材料导报, 2019, 33: 2753
9 Wei J X, Su C L, He Y H. The research on hot extruding temperature of GH3625 alloy tube billet [J]. Spec. Steel Technol., 2015, 21( 2): 38
9 韦家向, 苏承龙, 何云华. GH3625合金管坯热挤压温度研究 [J]. 特钢技术, 2015, 21( 2): 38
10 Ding Y T, Liu D X, Hu Y, et al. A short-flow hot extrusion process for forming Inconel 625 superalloy pipe [P]. Chin Pat, 201510899976.1, 2015
10 丁雨田, 刘德学, 胡 勇等. 短流程热挤压变形高温合金Inconel 625管材方法 [P]. 中国专利, 201510899976.1, 2015))
11 Liu D X, Cheng X W, Zhang X, et al. Effects of heating and hot extrusion process on microstructure and properties of Inconel 625 alloy [J]. J. Wuhan Univ. Technol., 2016, 31: 1368
12 Dong J X. Extrusion and Microstructure Control of Nickel based Alloy Tubes [M]. Beijing: Metallurgical Industry Press, 2014: 1
12 董建新. 镍基合金管材挤压及组织控制 [M]. 北京: 冶金工业出版社, 2014: 1
13 Wang B S, Shao Y, Su C. Investigation on cracks in 825 alloy pipe during hot extrusion process [J]. Hot Work. Technol., 2013, 42( 15): 127
13 王宝顺, 邵 羽, 苏 诚. 825合金热挤压管裂纹研究 [J]. 热加工工艺, 2013, 42( 15): 127
14 Gao Y G, Sun H G, Pang Y S, et al. Investigation of hot extrusion-caused cracking of Inconel 718 seamless steel tube and related control measures [J]. Steel Pipe, 2017, 46( 6): 44
14 高玉光, 孙海刚, 庞于思等. Inconel 718无缝钢管热挤压开裂原因分析和控制 [J]. 钢管, 2017, 46( 6): 44
15 Peng H J. Study on hot deformation behaviors and hot tube extrusion mechanism of GH690 alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
15 彭海健. GH690合金热变形行为及管材热挤压机理研究 [D]. 北京: 北京有色金属研究总院, 2014
16 Wang B. High speed hot tube extrution process of Inconel690 superalloy [J]. Rare Met. Mater. Eng., 2014, 43( ): 137
16 王 彬. Inconel690合金管高速热挤压成形工艺研究 [J]. 稀有金属材料与工程, 2014, 43( ): 137
17 Jiang H, Yang L, Dong J X, et al. The recrystallization model and microstructure prediction of alloy 690 during hot deformation [J]. Mater. Des., 2016, 104: 162
18 Godasu A K, Prakash U, Mula S. Flow stress characteristics and microstructural evolution of cast superalloy 625 during hot deformation [J]. J. Alloys Compd., 2020, 844: 156200
19 Guo S L, Li D F, Guo Q M, et al. Investigation on hot workability characteristics of Inconel 625 superalloy using processing maps [J]. J. Mater. Sci., 2012, 47: 5867
20 Wang Y, Wang J S, Dong J S, et al. Hot deformation characteristics and hot working window of as-cast large-tonnage GH3535 superalloy ingot [J]. J. Mater. Sci. Technol., 2018, 34: 2439
21 Lypchanskyi O, Śleboda T, Zygula K, et al. Evaluation of hot workability of nickel-based superalloy using activation energy map and processing maps [J]. Materials, 2020, 13: 3629
22 Yao Z H, Dong J X, Zhang M C, et al. Hot deformation behaviour of superalloy GH738 [J]. Rare Met. Mater. Eng., 2013, 42: 1199
22 姚志浩, 董建新, 张麦仓等. GH738高温合金热加工行为 [J]. 稀有金属材料与工程, 2013, 42: 1199
23 Ding Y T, Gao X, Dou Z Y, et al. Numerical simulation of hot extrusion process of GH3625 alloy tubes [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 1121
23 丁雨田, 高 鑫, 豆正义等. GH3625合金管材热挤压过程的数值模拟 [J]. 特种铸造及有色合金, 2016, 36: 1121
24 Ding Y T, Wang K, Gao Y B, et al. Microstructure and crack forming mechanism of GH3625 alloy tube by hot extruded forming process [J]. Rare Met. Mater. Eng., 2020, 49: 1743
24 丁雨田, 王 琨, 高钰璧等. 热挤压成形GH3625合金管材组织及裂纹形成机理 [J]. 稀有金属材料与工程, 2020, 49: 1743
25 Ding Y T, Li H F, Wang W, et al. Microsegregation and homogenization of GH3625 alloy ingot [J]. Mater. Sci. Technol., 2016, 24( 6): 14
25 丁雨田, 李海峰, 王 伟等. 铸锭GH3625合金微观偏析及均匀化热处理 [J]. 材料科学与工艺, 2016, 24( 6): 14
26 Schirra J J, Caless R H, Hatala R W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718 [A]. Superalloys 718, 625 and Various Derivatives [C]. Warrendale, PA: The Minerals, Metals & Materials Society, 1991: 375
27 Deng Q, Du J H, Zhuang J Y, et al. As-cast microstructure and segregation improvement of alloy GH742y [J]. J. Iron Steel Res., 2007, 19( 5): 89
27 邓 群, 杜金辉, 庄景云等. GH742y合金的铸态组织及铸态偏析的改善 [J]. 钢铁研究学报, 2007, 19( 5): 89
28 Li X X, Jia C L, Zhang Y, et al. Incipient melting phase and its dissolution kinetics for a new superalloy [J]. Trans. Nonferrous Met. Soc., 2020, 30: 2107
29 Ding Y T, Dou Z Y, Gao Y B, et al. Phase transformation during metling and solidifying process of homogenized superalloy GH3625 [J]. Chin. J. Mater. Res., 2017, 31: 853
29 丁雨田, 豆正义, 高钰璧等. 均匀化态GH3625合金熔化和凝固过程中的相变 [J]. 材料研究学报, 2017, 31: 853
30 Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy [J]. Mater. Sci. Eng., 2019, A767: 138361
31 Jiang H, Dong J X, Zhang M C, et al. Evolution of twins and substructures during low strain rate hot deformation and contribution to dynamic recrystallization in alloy 617B [J]. Mater. Sci. Eng., 2016, A649: 369
32 Gleiter H. The formation of annealing twins [J]. Acta Metall., 1969, 17: 1421
33 Li Z G. Evolution of annealing twin boundary and mechanical behavior in a nickel-iron based wrought alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015
33 李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为 [D]. 上海: 上海交通大学, 2015
34 Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel [J]. Metall. Mater. Trans., 2012, 43A: 2056
35 Liu C T, Zhu J H, Brady M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys [J]. Intermetallics, 2000, 8: 1119
36 Malitckii E, Remes H, Lehto P, et al. Strain accumulation during microstructurally small fatigue crack propagation in bcc Fe-Cr ferritic stainless steel [J]. Acta Mater., 2018, 144: 51
37 Liu X G, Xu H, Gao X. Fracture failure analysis of automotive main axle [J]. Found. Technol., 2018, 39: 933
37 刘晓光, 徐 浩, 高 鑫. 汽车主轴的断裂失效分析 [J]. 铸造技术, 2018, 39: 933
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.