Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 623-631    DOI: 10.11900/0412.1961.2020.00272
  研究论文 本期目录 | 过刊浏览 |
镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为
程伟丽1,2(), 谷雄杰1, 成世明1, 陈宇航1, 余晖3, 王利飞1,2, 王红霞1,2, 李航1
1.太原理工大学 材料科学与工程学院 太原 030024
2.太原理工大学 山西省先进镁基材料重点实验室 太原 030024
3.河北工业大学 材料科学与工程学院 天津 300132
Discharge Performance and Electrochemical Behaviors of the Extruded Mg-2Bi-0.5Ca-0.5In Alloy as Anode for Mg-Air Battery
CHENG Weili1,2(), GU Xiongjie1, CHENG Shiming1, CHEN Yuhang1, YU Hui3, WANG Lifei1,2, WANG Hongxia1,2, LI Hang1
1.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan University of Technology, Taiyuan 030024, China
3.School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
引用本文:

程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
Weili CHENG, Xiongjie GU, Shiming CHENG, Yuhang CHEN, Hui YU, Lifei WANG, Hongxia WANG, Hang LI. Discharge Performance and Electrochemical Behaviors of the Extruded Mg-2Bi-0.5Ca-0.5In Alloy as Anode for Mg-Air Battery[J]. Acta Metall Sin, 2021, 57(5): 623-631.

全文: PDF(12529 KB)   HTML
摘要: 

利用XRD、SEM、EBSD、XPS和动电位极化、EIS技术、半电池及全电池恒流放电等方法,系统地研究了微观组织特征对镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In (质量分数,%) 合金放电性能和电化学行为的影响。结果表明,挤压态合金主要由完全动态再结晶晶粒组成,平均晶粒尺寸为(10.92 ± 0.23) μm。织构成分主要由基极从法线方向至挤压方向偏转45°~60°的非基面织构组成。合金主要包含α-Mg、纳米级Mg3Bi2相和微米级Mg2Bi2Ca相。在半电池测试中,挤压态合金在10 mA/cm2的电流密度下显示出平稳的放电过程和较负的放电电位(-1.622 V)。此外,基于挤压态合金为阳极的镁空气电池展现出较高的电池电压和功率密度,在120 mA/cm2的电流密度下电池电压和峰值功率密度分别为0.72 V和86.4 mW/cm2,这明显高于AZ31、AM50等商用镁空气电池用阳极材料的性能。该合金优异的放电性能主要归因于电极表面金属In的重新沉积、弱的织构强度、均匀的微观组织以及疏松且薄的放电产物膜。

关键词 镁空气电池Mg-Bi基合金微观组织放电性能电化学行为    
Abstract

Mg-air batteries have excellent applicability in the fields of electrochemical energy storage and conversion due to their high theoretical voltage (3.09 V) and high specific energy density (6.8 kW·h/kg). Nevertheless, the high polarization and low Coulombic efficiency reduce the inherently outstanding discharge performance of the Mg anode. Alloying and plastic deformation have been utilized to overcome these drawbacks by developing novel anode materials with relatively enhanced performance. In this work, the effect of microstructural characteristics on the discharge performance and electrochemical behaviors of the extruded Mg-2Bi-0.5Ca-0.5In (mass fraction, %) alloy as an anode for Mg-air batteries have been systematically discussed. Results indicate that the extruded alloy primarily consists of complete dynamically recrystallized grains with an average grain size of (10.92 ± 0.23) μm. The texture component is mainly composed of nonbasal texture consisting of texture components of basal poles from the normal direction to extrusion direction by around 45o-60o. The alloy contains α-Mg, nanoscale Mg3Bi2 phases, and microscale Mg2Bi2Ca phases. Furthermore, the extruded alloy exhibits a stable discharge process and negative discharge potential of -1.628 V at 10 mA/cm2 in a half-cell test. Moreover, the Mg-air battery based on the extruded alloy as an anode exhibits a high cell voltage and power density. For instance, the cell voltage and peak power density reach up to 0.72 V and 86.4 mW/cm2 at 120 mA/cm2, respectively, which is significantly higher than commercially accepted AZ31 and AM50 anodes for Mg-air batteries. The outstanding discharge properties are primarily attributed to the re-deposition of metallic In at the electrode surface, the weakened texture intensity, the uniform microstructure and the loose and thin discharge products film.

Key wordsMg-air battery    Mg-Bi base alloy    microstructure    discharge performance    electrochemical behavior
收稿日期: 2020-07-22     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51704209);山西省自然科学基金项目(201801D121088);山西省留学回国人员基金项目(2019-032);山西省科技重大项目(20191102008)
作者简介: 程伟丽,男,1982年生,教授,博士
图1  挤压态Mg-2Bi-0.5Ca-0.5In (BXI200)合金的晶体取向图和(0001)极图
图2  挤压态BXI200合金的晶粒尺寸分布图
图3  挤压态BXI200合金的SEM像
PointMgBiCa
A63.436.60
B44.542.113.4
表1  挤压态BXI200合金第二相的EDS结果 (atomic fraction / %)
图4  挤压态BXI200合金的XRD谱
图5  挤压态BXI200合金的开路电位和极化曲线
图6  挤压态BXI200合金的EIS
图7  挤压态BXI200合金的等效电路图
图8  挤压态BXI200合金在不同电流密度下的恒流放电曲线以及镁空气电池的电池电压和功率密度
图9  挤压态BXI200合金在120 mA/cm2电流密度下放电10 min的SEM像
图10  挤压态BXI200合金放电产物的XPS分析(a) Mg1s (b) Ca2p (c) O1s (d) In3d
图11  在10和120 mA/cm2电流密度下放电不同时间段挤压态BXI200合金去产物的表面形貌
1 Liu X, Xue J L. The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries [J]. Energy, 2019, 189: 116314
2 Liu X, Guo Z C, Xue J L, et al. The role of Al2Ca and Al2(Sm, Ca, La) particles in the microstructures and electrochemical discharge performance of as-extruded Mg-3wt.%Al-1wt.%Zn-based alloys for primary Mg-air batteries [J]. Int. J. Energy Res., 2019, 43: 4569
3 Zheng T X, Hu Y B, Zhang Y X, et al. Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries [J]. Mater. Des., 2018, 137: 245
4 Rahman M, Wang X J, Wen C E. High energy density metal-air batteries: A review [J]. J. Electrochem. Soc., 2013, 160: A1759
5 Xiong H Q, Yu K, Yin X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery [J]. J. Alloys Compd., 2017, 708: 652
6 Feng Y, Xiong W H, Zhang J C, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries [J]. J. Mater. Chem., 2016, 4A: 8658
7 Ma Y B, Li N, Li D Y, et al. Performance of Mg-14Li-1Al-0.1Ce as anode for Mg-air battery [J]. J. Power Sources, 2011, 196: 2346
8 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
8 曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
9 Zhang Z M, Yu K, Ren W W, et al. Microstructure of directly extruded Mg-1Zn-1Ca alloy and its corrosion behavior in SBF solution [J]. Acta Metall. Sin., 2015, 51: 985
9 张忠明, 余 凯, 任伟伟等. 正挤压态Mg-1Zn-1Ca合金的显微组织及其在SBF溶液中的腐蚀行为 [J]. 金属学报, 2015, 51: 985
10 Zhi Q, Gao J, Dong C F, et al. Corrosion behavior of microarc oxidation film on AZ91D magnesium alloy [J]. Acta Metall. Sin., 2008, 44: 986
10 郅 青, 高 瑾, 董超芳等. AZ91D镁合金微弧氧化膜的腐蚀行为研究 [J]. 金属学报, 2008, 44: 986
11 Wang N G, Wang R C, Peng C Q, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery [J]. Electrochim. Acta, 2014, 149: 193
12 Gu X J, Cheng W L, Cheng S M, et al. Discharge behavior of Mg-Sn-Zn-Ag alloys with different Sn contents as anodes for Mg-air batteries [J]. J. Electrochem. Soc., 2020, 167: 020501
13 Liu X, Xue J L, Zhang P J, et al. Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries [J]. J. Power Sources, 2019, 414: 174
14 Wang N G, Wang R C, Peng C Q, et al. Effect of hot rolling and subsequent annealing on electrochemical discharge behavior of AP65 magnesium alloy as anode for seawater activated battery [J]. Corros. Sci., 2012, 64: 17
15 Feng Y, Lei G, He Y Q, et al. Discharge performance of Mg-Al-Pb-La anode for Mg-air battery [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 2274
16 Wang N G, Li W P, Huang Y X, et al. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries [J]. J. Power Sources, 2019, 436: 226855
17 Huang G S, Zhao Y C, Wang Y X, et al. Performance of Mg-air battery based on AZ31 alloy sheet with twins [J]. Mater. Lett., 2013, 113: 46
18 Yuasa M, Huang X S, Suzuki K, et al. Effects of microstructure on discharge behavior of AZ91 Alloy as anode for Mg-air battery [J]. Mater. Trans., 2014, 55: 1202
19 Liu X, Xue J L, Zhang D. Electrochemical behaviors and discharge performance of the as-extruded Mg-1.5 wt%Ca alloys as anode for Mg-air battery [J]. J. Alloys Compd., 2019, 790: 822
20 Deng M, Höche D, Lamaka S V, et al. Revealing the impact of second phase morphology on discharge properties of binary Mg-Ca anodes for primary Mg-air batteries [J]. Corros. Sci., 2019, 153: 225
21 Deng M, Höche D, Lamaka S V, et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries [J]. J. Power Sources, 2018, 396: 109
22 Liu X, Xue J L, Liu S Z. Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities [J]. Mater. Des., 2018, 160: 138
23 Wang N G, Wang R C, Feng Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery [J]. Corros. Sci., 2016, 112: 13
24 Cheng S M, Cheng W L, Gu X J, et al. Discharge properties of low-alloyed Mg-Bi-Ca alloys as anode materials for Mg-air batteries: Influence of Ca alloying [J]. J. Alloys Compd., 2020, 823: 153779
25 Flamini D O, Saidman S B. Electrochemical behaviour of Al-Zn-Ga and Al-In-Ga alloys in chloride media [J]. Mater. Chem. Phys., 2012, 136: 103
26 Park I J, Choi S R, Kim J G. Aluminum anode for aluminum-air battery—Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution [J]. J. Power Sources, 2017, 357: 47
27 Yuan S Q, Lu H M, Sun Z G, et al. Electrochemical performance of Mg-3Al modified with Ga, In and Sn as anodes for Mg-air battery [J]. J. Electrochem. Soc., 2016, 163: A1181
28 Gore P, Fajardo S, Birbilis N, et al. Anodic activation of Mg in the presence of In3+ ions in dilute sodium chloride solution [J]. Electrochim. Acta, 2019, 293: 199
29 Chai Y F, Jiang B, Song J F, et al. Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Sn-Zn alloy through Ca addition [J]. J. Alloys Compd., 2019, 782: 1076
30 Yuasa M, Huang X S, Suzuki K, et al. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries [J]. J. Power Sources, 2015, 297: 449
31 Deng M, Wang L Q, Höche D, et al. Ca/In micro alloying as a novel strategy to simultaneously enhance power and energy density of primary Mg-air batteries from anode aspect [J]. J. Power Sources, 2020, 472: 228528
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.