Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 595-604    DOI: 10.11900/0412.1961.2020.00275
  研究论文 本期目录 | 过刊浏览 |
板条马氏体拉伸塑性行为的原位分析
石增敏1(), 梁静宇1, 李箭2(), 王毛球3, 方子帆1
1.三峡大学 水电机械设备设计与维护湖北省重点实验室 宜昌 443002
2.华中科技大学 材料科学与工程学院 武汉 430074
3.钢铁研究总院 特殊钢研究所 北京 100081
In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process
SHI Zengmin1(), LIANG Jingyu1, LI Jian2(), WANG Maoqiu3, FANG Zifan1
1.Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
2.School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3.Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
Zengmin SHI, Jingyu LIANG, Jian LI, Maoqiu WANG, Zifan FANG. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. Acta Metall Sin, 2021, 57(5): 595-604.

全文: PDF(9787 KB)   HTML
摘要: 

采用原位中子衍射分析技术测试了板条马氏体钢的拉伸塑性行为,采用Z-Rietveld和卷积多重全曲线拟合方法对衍射数据进行拟合分析。板条马氏体内的位错为刃、螺型位错的混合位错,并呈现随机分布特征。马氏体的加工硬化需要同时考虑位错密度和位错类型2个因素的作用。随着拉伸应变量的增加,螺型位错数量减少,刃型位错数量增加,总位错密度增加。硬取向板条束内位错密度增加,呈现加工硬化特征;软取向板条束内位错密度降低,出现加工软化特征。外加应力在硬取向和软取向板条束内产生应力再分配,变形后在板条束内形成长程内应力。

关键词 超高强度钢板条马氏体塑性变形位错密度原位中子衍射    
Abstract

Lath martensitic steels are widely used in high strength structural materials. Coherency strains in quenched lath martensite induce huge dislocation densities, which are the sources of the alloys' strength, whereas the way its microstructure functions is still unclear. The plastic deformation behavior of lath martensite in ultrahigh strength steel was investigated using in situ neutron diffraction technology. Diffraction data were analyzed using the Z-Rietveld and convolutional multiple whole profile (CMWP) fitting procedures. Transformation dislocations in the as-quenched martensite were mixed with edge and screw components and showed characteristics of random distribution. Significant work hardening of lath martensite can be better understood by considering the increase in dislocation density along with changes in dislocation arrangement. With increased tensile strain, the total dislocation density increased with the increasing amount of edge-type components and the decreasing amount of screw-type components. The hard orientation packets showed characteristics of work hardening with an increased dislocation density, whereas the soft orientation packets showed characteristics of work softening with a decreased dislocation density. The partitioning of the applied load was carried out within two types of packets, which further promoted the formation of long-range internal stresses after deformation.

Key wordsultra-high strength steel    lath martensite    plastic deformation    dislocation density    in situ neutron diffraction
收稿日期: 2020-07-22     
ZTFLH:  TG142.1  
基金资助:国家重点基础研究发展计划项目(2010CB630802);国家自然科学基金项目(51201093);湖北省技术创新专项(重大项目)(2017AAA113)
作者简介: 石增敏,女,1973年生,教授,博士
图1  原位衍射分析试样布置示意图
图2  22SiMn2TiB钢的SEM和EBSD像
图3  入射电子束沿<111>和<001>方向的22SiMn2TiB钢扫描透射明场(STEM-BF)像及环形暗场(ADF)像
图4  22SiMn2TiB钢的真应力-真应变曲线
图5  22SiMn2TiB钢的中子衍射谱及马氏体衍射峰相对强度随外加载荷的变化
图6  马氏体衍射峰的半峰宽(FWHM)及由卷积多重全曲线(CMWP)拟合的位错密度随应变的变化
图7  塑性变形卸载状态下的残余奥氏体体积分数
图8  沿轴向方向拉伸形变过程中测试的晶格应变以及卸载状态下两相的晶格残余应变
图9  软取向和硬取向板条束的定义方法示意图及(200)衍射峰的CMWP拟合曲线
图10  基于CMWP拟合的硬取向板条束和软取向板条束内的位错密度、位错类型及应力分布变化
1 Morito S, Nishikawa J, Maki T. Dislocation density within lath martensite in Fe-C and Fe-Ni alloys [J]. ISIJ Int., 2003, 43: 1475
2 Shi Z M, Gong W, Tomota Y, et al. Study of tempering behavior of lath martensite using in situ neutron diffraction [J]. Mater. Charact., 2015, 107: 29
3 Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
4 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
5 Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
6 Krauss G. Steels: Heat Treatment and Processing Principles [M]. 2nd Ed., Materials Park, OH: ASM International, 1990: 149
7 Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
8 Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, A438-440: 237
9 Shi Z M, Liu K, Wang M Q, et al. Effect of tensile deformation of austenite on the morphology and strength of lath martensite [J]. Met. Mater. Int., 2012, 18: 317
10 Wang C F, Wang M Q, Dong H. In-situ observation of deformation and fracture process for lath martensite steel [J]. J. Iron Steel Res., 2012, 24(3): 38
10 王春芳, 王毛球, 董 瀚. 板条马氏体钢变形与断裂过程的原位观察 [J]. 钢铁研究学报, 2012, 24(3): 38
11 Chen P, Wang G D, Ceguerra A V, et al. Yield strength enhancement by carbon trapping in ferrite of the quenching and partitioning steel [J]. Metall. Mater. Trans., 2018, 49A: 235
12 Morooka S, Tomota Y, Kamiyama T. Heterogeneous deformation behavior studied by in situ neutron diffraction during tensile deformation for ferrite, martensite and pearlite steels [J]. ISIJ Int., 2008, 48: 525
13 Wang Y, Zhang K, Guo Z H, et al. A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel [J]. Acta Metall. Sin., 2012, 48: 641
13 王 颖, 张 柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应 [J]. 金属学报, 2012, 48: 641
14 Zhang K, Liu P, Li W, et al. High strength-ductility Nb-microalloyed low martensitic carbon steel: Novel process and mechanism [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 1264
15 Tomota Y, Lukáš P, Neov D, et al. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel [J]. Acta Mater., 2003, 51: 805
16 Tomota Y, Xu P G, Oliver E C, et al. In situ neutron diffraction during thermo-mechanically controlled process for low alloy steels [A]. In-Situ Studies with Photons, Neutrons and Electrons Scattering [M]. Berlin: Springer-Verlag, 2010: 17
17 Xu P G, Tomota Y, Lukáš P, et al. Austenite-to-ferrite transformation in low alloy steels during thermomechanically controlled process studied by in situ neutron diffraction [J]. Mater. Sci. Eng., 2006, A435-436: 46
18 Tomota Y, Wang Y X, Ohmura T, et al. In situ neutron diffraction study on ferrite and pearlite transformations for a 1.5Mn-1.5Si-0.2C steel [J]. ISIJ Int., 2018, 58: 2125
19 Aranas Jr C, Rodrigue S, Siciliano F, et al. In-situ X-ray diffraction evidence of dynamic transformation of austenite to ferrite during hot compression test in the single austenite phase field [J]. Scr. Mater., 2020, 177: 86
20 Ungár T, Gubicza J, Ribárik G, et al. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals [J]. J. Appl. Cryst., 2001, 34: 298
21 Ribárik G, Gubicza J, Ungár T. Correlation between strength and microstructure of ball-milled Al-Mg alloys determined by X-ray diffraction [J]. Mater. Sci. Eng., 2004, A387-389: 343
22 Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
23 Wilkens M. The determination of density and distribution of dislocations in deformed single crystals from broadened X-Ray diffraction profiles [J]. Phys. Stat. Sol., 1970, 2A: 359
24 Iakoubovskii K, Mitsuishi K, Furuya K. High-resolution electron microscopy of detonation nanodiamond [J]. Nanotechnology, 2008, 19: 155705
25 Harjo S, Kawasaki T, Tomota Y, et al. Work hardening, dislocation structure, and load partitioning in lath martensite determined by in situ neutron diffraction line profile analysis [J]. Metall. Mater. Trans., 2017, 48A: 4080
26 Hirsch P B, Howie A, Nicholson R B, et al. Electron Microscopy of Thin Crystals [M]. London: Butterworths, 1965: 462
27 Huang X, Morito S, Hansen N, et al. Ultrafine structure and high strength in cold-rolled martensite [J]. Metall. Mater. Trans., 2012, 43A: 3517
28 Zhang K, Liu P, Li W, et al. Ultrahigh strength-ductility steel treated by a novel quenching- partitioning- tempering process [J]. Mater. Sci. Eng., 2014, A619: 205
29 He Y H, Rao Q H, Tan Y H. Investigation on the morphology of martensite in carbon steels [J]. J. Cent. South Univ. Technol., 1996, 3: 122
30 Jakobsen B, Poulsen H F, Lienert U, et al. Formation and subdivision of deformation structures during plastic deformation [J]. Science, 2006, 312: 889
31 Li Y Z, Huang M X. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
31 李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
32 Ungár T, Groma I, Wilkens M. Asymmetric X-ray line broadening of plastically deformed crystals. II. Evaluation procedure and application to [001]-Cu crystals [J]. J. Appl. Cryst., 1989, 22: 26
33 Ungár T, Harjo S, Kawasaki T, et al. Composite behavior of lath martensite steels induced by plastic strain, a new paradigm for the elastic-plastic response of martensitic steels [J]. Metall. Mater. Trans., 2017, 48A: 159
34 Daymond M R, Tomé C N, Bourke M A M. Measured and predicted intergranular strains in textured austenitic steel [J]. Acta Mater., 2000, 48: 553
35 Oliver E C, Daymond M R, Withers P J. Interphase and intergranular stress generation in carbon steels [J]. Acta Mater., 2004, 52: 1937
36 Muránsky O, Šittner P, Zrník J, et al. In situ neutron diffraction investigation of the collaborative deformation -transformation mechanism in TRIP-assisted steels at room and elevated temperatures [J]. Acta Mater., 2008, 56: 3367
37 Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility in high-strength steels [J]. ASM Trans. Quart., 1967, 60: 252
38 Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
39 Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals [J]. Acta Metall., 1983, 31: 1367
40 Ungár T, Mughrabi H, Rönnpagel D, et al. X-ray line-broadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals [J]. Acta Metall., 1984, 32: 333
41 Mine Y, Hirashita K, Takashima H, et al. Micro-tension behaviour of lath martensite structures of carbon steel [J]. Mater. Sci. Eng., 2013, A560: 535
42 Ghassemi-Armaki H, Chen P, Bhat S, et al. Microscale-calibrated modeling of the deformation response of low-carbon martensite [J]. Acta Mater., 2013, 61: 3640
43 Essmann U, Mughrabi H. Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities [J]. Philos. Mag., 1979, 40A: 731
44 Taylor G I. The mechanism of plastic deformation of crystals: Part I. -Theoretical [J]. Proc. Roy. Soc., 1934, 45A: 362
45 Jakobsen B, Poulsen H F, Lienert U, et al. Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures [J]. Acta Mater., 2007, 55: 3421
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[5] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[8] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[9] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[10] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[11] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[12] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[13] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[14] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[15] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.