Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 632-640    DOI: 10.11900/0412.1961.2020.00225
  研究论文 本期目录 | 过刊浏览 |
非均匀组织FeMnCoCr高熵合金的微观结构和力学性能
王洪伟1, 何竹风1, 贾楠2()
1.东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure
WANG Hongwei1, HE Zhufeng1, JIA Nan2()
1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
Hongwei WANG, Zhufeng HE, Nan JIA. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. Acta Metall Sin, 2021, 57(5): 632-640.

全文: PDF(19134 KB)   HTML
摘要: 

提出了一种简单的高熵合金加工工艺,即对Fe-Mn系高熵合金采用中等形变量冷轧和中温短时退火相结合的方法,获得了由晶粒尺寸为数十微米的形变晶粒和超细尺度再结晶晶粒组成的非均匀结构。通过向合金中同时引入由高密度位错、晶粒细化、析出相、ε-马氏体、α-马氏体和回复孪晶等微观结构特征及变形过程中持续发生的形变孪生、ε-马氏体相变引起的多种强化机制,使屈服强度较充分再结晶态显著提升并达到825 MPa。同时,在塑性变形过程中由于发生了显著的形变孪生和一定的由形变诱发的奥氏体向ε-马氏体转变,合金仍具有约28.6%的均匀延伸率,合金的综合力学性能得到有效提升。该工艺为优化以fcc结构为主的低层错能合金的力学性能提供了新思路。

关键词 高熵合金力学性能微观结构强化机制    
Abstract

Growing attention has been placed on high-entropy alloys (HEAs) owing to their promising mechanical properties. Particularly, HEAs in which the main crystal structure is fcc are attracting significant attention. Although such alloys exhibit a good combination of strength and ductility, they cannot meet the increasing demands of applications because of limited yield strengths. In recent years, researchers have tried to improve yield strengths of HEAs by refining grains and introducing interstitial atoms. However, the processing cost is high and is often accompanied by the significant loss of ductility. In this study, we propose a simple processing route incorporating cold rolling at medium thickness reductions and short-time annealing at medium temperatures to obtain a heterogeneous structure in Fe-Mn based HEAs consisting of deformed grains with an average diameter of several tens of microns and recrystallized ultrafine grains. By simultaneously introducing multiple strengthening mechanisms, including the strengthening contributed by the microstructural characteristics of dense dislocations, grain refinement, precipitates, ε-martensite, α-martensite, and recovery twins, as well as the strengthening induced by deformation twinning and ε-martensite phase transition that occurs continuously during deformation, the yield strength of the alloy significantly increases compared with that of the fully recrystallized material and reaches 825 MPa. Simultaneously, due to the activation of significant deformation twinning and deformation-induced martensitic transformation, the uniform elongation of the alloy is about 28.6%. The proposed material fabrication method is simple, cost-effective, and can effectively improve the mechanical properties of Fe-Mn based HEAs, providing new insight into optimizing the mechanical properties of low stacking fault energy alloys of the fcc structure.

Key wordshigh-entropy alloy    mechanical property    microstructure    strengthening mechanism
收稿日期: 2020-06-28     
ZTFLH:  TG156.21  
基金资助:国家自然科学基金项目(51922026);中央高校基本科研业务费项目(N2002005);辽宁省自然科学基金项目(20180510010);高等学校学科创新引智计划项目(B20029)
作者简介: 王洪伟,女,1994年生,硕士
图1  Fe50Mn30Co10Cr10高熵合金的室温拉伸力学性能(a) engineering stress-strain curves of the HEA annealed at 650oC for different time periods(b) engineering stress-strain curves of the HEA at different states(c) true stress-strain curves(d) work hardening curves corresponding to Fig.1c
StateYield stress MPaTensile stress MPaUniform elongation
%
HOMO20861864.7
FC24568054.9
PC82592828.6
表1  不同状态下Fe50Mn30Co10Cr10高熵合金的力学性能
图2  不同状态Fe50Mn30Co10Cr10高熵合金的XRD谱
图3  PC态Fe50Mn30Co10Cr10高熵合金在拉伸变形前后的EBSD像(a1, a2) recrystallization region (b1, b2) deformed matrix-preserved region (c1, c2) the region close to the fracture surface of the alloy
图4  PC态Fe50Mn30Co10Cr10高熵合金形变前的TEM像及选区电子衍射(SAED)花样(a) recovery twins on the austenitic matrix(b) α-martensite laths in the austenitic matrix(c) morphology of precipitates in the recrystallized austenite(d) HRTEM image taken from the interface between precipitate and austenite as indicated in the dotted box in Fig.4c
PositionFeMnCoCr
1 (precipitate )41.2236.467.6114.71
2 (precipitate )41.7836.707.4614.06
3 (matrix )47.4832.699.5610.27
4 (matrix )47.0732.869.8110.26
表2  图4中PC态Fe50Mn30Co10Cr10高熵合金中基体和析出相的EDS结果 (atomic fraction / %)
图5  PC态Fe50Mn30Co10Cr10高熵合金经拉伸变形后断口附近区域的TEM像及SAED花样(a, b) dislocations accumulated around the precipitates and α-martensite laths under the double beam condition, respectively. The SAED pattern in Fig.5b confirms the existence of α-martensite laths (c1, d1) dense deformation twins formed between α-martensite laths and in the interior of annealing twins, respectively (c2, d2) the corresponding SAED patterns to Figs.5c1 and d1, respectively
图6  FC态Fe50Mn30Co10Cr10高熵合金经拉伸变形后断口附近区域的TEM像及SAED花样
1 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
2 Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility [J]. Scr. Mater., 2014, 72-73: 5
3 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
4 Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
5 Anand G, Goodall R, Freeman C L. Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys [J]. Scr. Mater., 2016, 124: 90
6 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
7 Juan C C, Tsai M H, Tsai C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys [J]. Intermetallics, 2015, 62: 76
8 Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloys: The effect of entropy [J]. Mater. Des., 2016, 96: 10
9 Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams [J]. JOM, 2014, 66: 1984
10 Feuerbacher M, Heidelmann M, Thomas C. Hexagonal high-entropy alloys [J]. Mater. Res. Lett., 2015, 3: 1
11 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
12 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
13 Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
14 Oh H S, Ma D C, Leyson G P, et al. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment [J]. Entropy, 2016, 18: 321
15 Xiong F, Fu R D, Li Y J, et al. Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys [J]. J. Alloys Compd., 2020, 822: 153512
16 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
17 Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
18 Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
19 Lu W J, Liebscher C H, Dehm G, et al. Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys [J]. Adv. Mater., 2018, 30: 1804727
20 Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
21 Bae J W, Seol J B, Moon J, et al. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures [J]. Acta Mater., 2018, 161: 388
22 Uzer B, Picak S, Liu J, et al. On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys [J]. Mater. Res. Lett., 2018, 6: 442
23 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
24 Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano, 2018, 4: 46
25 Li Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
26 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
27 He Z F, Jia N, Wang H W, et al. The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy [J]. Mater. Sci. Eng., 2020, A776: 138982
28 Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy [J]. Mater. Trans. JIM, 1993, 34: 489
29 Olsen G B, Cohen M. Dislocation theory of martensitic transformations [A]. Dislocations in Solids [M]. Vol.7.,Amsterdam: North-Holland, 1986: 295
30 Zhang W Y, Yan D S, Lu W J, et al. Carbon and nitrogen co-doping enhances phase stability and mechanical properties of a metastable high-entropy alloy [J]. J. Alloys Compd., 2020, 831: 154799
31 He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
32 Wang M M, Li Z M, Raabe D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy [J]. Acta Mater., 2018, 147: 236
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[11] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.