Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 613-622    DOI: 10.11900/0412.1961.2020.00253
  研究论文 本期目录 | 过刊浏览 |
热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响
王悦1,2, 王继杰1, 张昊2, 赵泓博2, 倪丁瑞2(), 肖伯律2, 马宗义2
1.沈阳航空航天大学 材料科学与工程学院 沈阳 110136
2.中国科学院金属研究所 沈阳 110016
Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting
WANG Yue1,2, WANG Jijie1, ZHANG Hao2, ZHAO Hongbo2, NI Dingrui2(), XIAO Bolv2, MA Zongyi2
1.College of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.
Yue WANG, Jijie WANG, Hao ZHANG, Hongbo ZHAO, Dingrui NI, Bolv XIAO, Zongyi MA. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. Acta Metall Sin, 2021, 57(5): 613-622.

全文: PDF(29344 KB)   HTML
摘要: 

采用激光选区熔化制备了致密度达99.63%、力学性能良好的AlSi10Mg样品,对比分析了不同热处理工艺对样品平行于基板方向组织与性能的影响。结果表明,沉积态样品水平方向的抗拉强度可达478 MPa,延伸率约8%,平均硬度约122 HV。为进一步提高样品延伸率,选取了不同热处理工艺进行组织调控。发现各热处理样品塑性均有一定程度提高,但强度变化差异较大。经540℃、1 h固溶处理后,样品中的网状Si组织已完全消失,强度降至约246 MPa,但延伸率超过了22%;经236℃、10 h去应力退火处理后,网状Si出现球化现象,抗拉强度下降至368 MPa,延伸率约为17%;而经130℃、4 h的时效后,熔池仍然保留完整的网状Si结构,在保持高强度的同时,塑性提高到约11.9%,平均硬度也增至约133 HV,与沉积态相比提升了10%。对比发现,低温短时间的时效热处理可以使样品保留打印过程中因快速冷却而形成的细晶组织,同时促进沉淀相的析出及网状Si的少量球化,从而使得时效样品获得了最优的综合力学性能。

关键词 增材制造激光选区熔化AlSi10Mg合金热处理力学性能    
Abstract

The urgent need for lightweight, high-accuracy, and personalized products has led to the rapid development of additive manufacturing. Selective laser melting (SLM), which is a very promising additive manufacturing technique, has attracted remarkable attention. The mechanical properties of SLM parts are highly related to the formation of pores and cracks. In this work, SLM parameters for AlSi10Mg alloy were optimized, and the SLM AlSi10Mg sample with a high relative density of 99.63% was obtained. The SLM sample exhibited good properties, including an ultimate tensile strength (UTS) of approximately 478 MPa, a total elongation of 8%, and an average hardness of 122 HV along the horizontal direction. However, due to a high cooling rate, an inhomogeneous microstructure with refined grains and a Si network was obtained. To achieve a homogeneous microstructure and further improve the elongation of the SLM samples, the effect of heat treatments on the microstructure and mechanical properties of the SLM samples along the horizontal direction was analyzed. After the heat treatments, the strength of the samples changed significantly and the elongation was significantly improved. Further, after a solid solution treatment at 540oC for 1 h, the UTS significantly decreased to approximately 246 MPa and the elongation increased to more than 22%. For the sample annealed at 236oC for 10 h, a UTS of approximately 368 MPa and elongation of approximately 17% were obtained. Moreover, the sample subjected to ageing at 130oC for 4 h exhibited a high strength similar to the level of the SLM sample, the elongation was increased to approximately 11.9%, and the hardness was approximately 133 HV which is 10% higher than that of the SLM sample. The improved performance of the aged samples can be attributed to the combination of solution strengthening, microstructural refinement, and precipitation strengthening. The results show that low-temperature ageing is the optimized heat-treatment method for SLM samples with fine microstructures.

Key wordsadditive manufacturing    selective laser melting    AlSi10Mg alloy    heat treatment    mechanical property
收稿日期: 2020-07-13     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2017YFB0703104);中国科学院先导专项
作者简介: 王 悦,女,1996年生,硕士生
图1  用于激光选区熔化(SLM)的AlSi10Mg粉末形貌(a) surface morphology (b) cross section of a particle under high magnification
Heat treatmentParameter
SLMNo heat treatment
Ageing130oC, 4 h, air cooling
Annealing236oC, 10 h, water quenching
Annealing + ageing236oC, 10 h, water quenching + 130oC, 4 h, air cooling
Solid solution540oC, 1 h, water quenching
T6540oC, 1 h, water quenching + 130oC, 4 h, air cooling
表1  SLM制备AlSi10Mg热处理工艺
图2  拉伸试样尺寸及取样方向(垂直于堆垛方向)
图3  不同扫描速率及线能量对SLM制备样品宏观形貌及致密度的影响
图4  优化参数后SLM制备样品显微组织的OM像及SEM像
图5  AlSi10Mg SLM制备样品的XRD谱和EDS结果
图6  近5年报道的SLM制备AlSi10Mg性能对比
图7  SLM制备样品分别经时效、去应力退火 + 时效、T6热处理后的显微组织
图8  SLM制备样品经不同热处理工艺后的拉伸曲线
图9  SLM制备样品经时效热处理前后的平均显微硬度对比
图10  SLM制备样品分别经时效、去应力退火+时效、固溶、T6处理后拉伸断口形貌(a-d) macroscopic fractures (e-h) enlarged fracture morphologies
图11  SLM样品时效前及经时效热处理后析出相的TEM像
1 Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Mater., 2013, 61: 1809
2 Geng Y X, Fan S M, Jian J L, et al. Mechanical properties of AlSiMg alloy specifically designed for selective laser melting [J]. Acta Metall. Sin., 2020, 56: 821
2 耿遥祥, 樊世敏, 简江林等. 选区激光熔化专用AlSiMg合金成分设计及力学性能 [J]. 金属学报, 2020, 56: 821
3 Yu J, Wang J J, Ni D R, et al. Microstructure and mechanical properties of additive manufactured 2319 alloy by electron beam freeform fabrication [J]. Acta Metall. Sin., 2018, 54: 1725
3 于 菁, 王继杰, 倪丁瑞等. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能 [J]. 金属学报, 2018, 54: 1725
4 Calignano F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting [J]. Mater. Des., 2014, 64: 203
5 Uddin S Z, Murr L E, Terrazas C A, et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing [J]. Addit. Manuf., 2018, 22: 405
6 Prashanth K G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting [J]. Acta Mater., 2017, 126: 25
7 Wang L F, Sun J, Yu X L, et al. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment [J]. Mater. Sci. Eng., 2018, A734: 299
8 Han Q Q, Jiao Y. Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 3315
9 Zhang H, Zhu H H, Qi T, et al. Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2016, A656: 47
10 Sun S Y, Liu P, Hu J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM) [J]. Opt. Laser Technol., 2019, 114: 158
11 Kempen K, Thijs L, Van Humbeeck J, et al. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation [J]. Mater. Sci. Technol., 2015, 31: 917
12 Zhuo L C, Wang Z Y, Zhang H J, et al. Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy [J]. Mater. Lett., 2019, 234: 196
13 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting [J]. Addit. Manuf., 2014, 1-4: 77
14 Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J]. Mater. Sci. Eng., 2016, A667: 139
15 Casati R, Hamidi Nasab M, Coduri M, et al. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting [J]. Metals, 2018, 8: 954
16 Maamoun A H, Elbestawi M, Dosbaeva G K, et al. Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder [J]. Addit. Manuf., 2018, 21: 234
17 Das M, Balla V K, Basu D, et al. Laser processing of SiC-particle-reinforced coating on titanium [J]. Scr. Mater., 2010, 63: 438
18 Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design [J]. Mater. Sci. Eng., 2019, A755: 28
19 Takata N, Kodaira H, Sekizawa K, et al. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments [J]. Mater. Sci. Eng., 2017, A704: 218
20 Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder [J]. Mater. Des., 2014, 63: 856
21 Wei P, Wei Z Y, Chen Z, et al. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior [J]. Appl. Surf. Sci., 2017, 408: 38
22 Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development [J]. Mater. Des., 2015, 65: 417
23 Fousová M, Dvorský D, Michalcová A, et al. Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures [J]. Mater. Charact., 2018, 137: 119
24 Larrosa N O, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy [J]. Theor. Appl. Fract. Mech., 2018, 98: 123
25 Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism [J]. Mater. Sci. Eng., 2016, A663: 116
26 Liu Y J, Liu Z, Jiang Y, et al. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg [J]. J. Alloys Compd., 2018, 735: 1414
27 Li W C, Zou Y Z, Zeng J M. Influence of solution temperature and time on microstructure of ZL114A alloy [J]. Mater. Mech. Eng., 2008, 32(11): 25
27 李卫超, 邹勇志, 曾建民. 固溶温度和时间对ZL114A合金组织的影响 [J]. 机械工程材料, 2008, 32(11): 25
28 Yu K B, Liu Y Z, Yang C Y. Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Mater. Sci. Eng. Powder Metall., 2018, 23: 298
28 余开斌, 刘允中, 杨长毅. 热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响 [J]. 粉末冶金材料科学与工程, 2018, 23: 298
29 Li Z H, Li B Q, Bai P K, et al. Research on the thermal behaviour of a selectively laser melted aluminium alloy: Simulation and experiment [J]. Materials, 2018, 11: 1172
30 Hadadzadeh A, Amirkhiz B S, Mohammadi M. Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg [J]. Mater. Sci. Eng., 2019, A739: 295
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.