Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 665-674    DOI: 10.11900/0412.1961.2020.00266
  研究论文 本期目录 | 过刊浏览 |
5356铝合金TIG电弧增材制造组织与力学性能
孙佳孝1, 杨可1(), 王秋雨1, 季珊林1, 包晔峰1, 潘杰2
1.河海大学 机电工程学院 常州 213022
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing
SUN Jiaxiao1, YANG Ke1(), WANG Qiuyu1, JI Shanlin1, BAO Yefeng1, PAN Jie2
1.College of Mechanical and Electronic Engineering, Hohai University, Changzhou 213022, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
Jiaxiao SUN, Ke YANG, Qiuyu WANG, Shanlin JI, Yefeng BAO, Jie PAN. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. Acta Metall Sin, 2021, 57(5): 665-674.

全文: PDF(18536 KB)   HTML
摘要: 

采用钨极惰性气体保护焊(TIG)电弧增材制造工艺制备5356铝合金成形件,并对成形件的组织和力学性能进行研究。结果表明,5356铝合金增材制造的相组成为α-Al基体和β(Al3Mg2)相;随沉积高度增加,沉积层显微组织由等轴晶向柱状晶转变,达到热平衡状态后趋于稳定,这是因为增材制造具有热积累效应;最顶层组织呈现树枝状,且Mg元素偏析严重;中下部组织形态多样,包括等轴晶组织、柱状晶组织及其混合组织,同时Mg元素偏析得到改善。力学性能测试结果显示,随沉积高度的增加,层内显微硬度先降低后趋于稳定,这是因为沉积层组织在增材制造过程中经历逐渐粗化的过程,导致显微硬度下降,达到热平衡状态后显微组织相对稳定,显微硬度也趋于稳定。沉积层层间位置的硬度大于层内,这是因为层间结合处为细小的等轴晶组织。聚集在层间的气孔可能是导致薄壁件屈服强度低于理论计算值的原因。抗拉强度、屈服强度以及伸长率都表现了各向异性,横向拉伸性能优于纵向,这是因为薄壁件层间气孔聚集以及显微组织不均匀。

关键词 5356铝合金钨极惰性气体保护焊(TIG)电弧增材制造显微组织力学性能    
Abstract

5356 aluminum alloy has been widely applied in transportation, aerospace and other fields owing to its low density, excellent fatigue property, and superior corrosion resistance. Aluminum alloy is widely manufactured by the arc additive technique that operates at a fast manufacturing speed with simple equipment and high material utilization. The property of 5356 aluminum alloy is closely related to its microstructure. To better control the property of this alloy for the additive manufacturing of forming parts, it is necessary to study the evolution of its microstructure. In this work, 5356 aluminum alloy forming parts were produced by tungsten inert gas welding (TIG) arc additive manufacturing, and their microstructures and mechanical properties were analyzed. The 5356 aluminum alloy formed by TIG additive manufacturing was composed of α-Al matrix and β(Al3Mg2) phase. As the deposition height increased, the layer microstructure transformed from equiaxed grains to columnar grains and tended to stabilize at thermal equilibrium. The top layer exhibited a dendritic microstructure with serious segregation of the Mg element. The middle and lower microstructures were varied and included equiaxed grains, columnar grains, and a mixture of these, with improved Mg-element segregation. As the deposition height increased, the microhardness in the layer first decreased and then stabilized. The microhardness was larger in the interlayers than in the deposition layers. The pores gathered in the interlayers might explain the lower yield strength of the thin-walled parts than the theoretically calculated value. The tensile strength, yield strength, and elongation were all anisotropic, and the tensile property was better in the transverse than in the longitudinal direction. This result was attributable to pore accumulation between the layers of the thin-walled parts and to the uneven microstructure.

Key words5356 aluminum alloy    tungsten inert gas welding (TIG)    arc additive manufacturing    microstructure    mechanical property
收稿日期: 2020-07-21     
ZTFLH:  TG40  
基金资助:国家重点研发计划项目(2017YFE0100100);常州市重点研发计划(社会发展科技支撑)项目(CE20205046)
作者简介: 孙佳孝,男,1997年生,硕士生
MaterialSiFeCuMnCrZnTiMgAl
AA60610.400.700.400.150.200.250.151.0Bal.
ER53560.250.400.100.120.130.100.135.0Bal.
WAAM 53560.0360.4410.0010.5620.1200.1380.0794.84193.603
表1  ER5356焊丝、AA6061基板和电弧增材制造(WAAM) 5356铝合金的化学成分 (mass fraction / %)
图1  WAAM 5356铝合金薄壁件制备过程示意图、试样截取示意图及拉伸试样几何尺寸
图2  WAAM 5356铝合金薄壁件从第1层到第12层显微组织的OM像
图3  WAAM 5356铝合金薄壁件不同沉积层的晶粒面积
图4  WAAM 5356铝合金薄壁件第15层显微组织的OM像
图5  WAAM 5356铝合金薄壁件最顶层的显微组织(a) macrostructure of the top region of the thin-walled part(b) microstructure of the bottom of the top layer(c) microstructure of the middle and upper of the top layer
图6  WAAM 5356铝合金试样的XRD谱
图7  WAAM 5356铝合金薄壁件沉积层试样的SEM像、OM像和EDS
图8  WAAM 5356铝合金薄壁件沉积层显微硬度
图9  WAAM 5356铝合金薄壁件层间结合处的显微硬度
图10  WAAM 5356铝合金薄壁件不同方向拉伸试样的实际屈服强度和理论计算的屈服强度
图11  横向拉伸和纵向拉伸试样断口形貌的SEM像

Specimen

Ultimate strength

MPa

Yield strength

MPa

Elongation

%

Transverse276.7133.229.8
Longitudinal265.5120.627.6
表2  拉伸实验结果
1 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeronaut. Manuf. Technol., 2018, 61(3): 74
1 李 权, 王福德, 王国庆等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
2 Wang T T, Zhang Y B, Xie Y L. Status and development prospects of the wire arc additive manufacture technology [J]. Elect. Weld. Mach., 2017, 47(8): 60
2 王庭庭, 张元彬, 谢岳良. 丝材电弧增材制造技术研究现状及展望 [J]. 电焊机, 2017, 47(8): 60
3 Nie D J, Luo M Q, Chen W S, et al. Review of research progress of aluminum alloys for transportation [J]. Nonferrous Met. Process., 2016, 45(5): 15
3 聂德键, 罗铭强, 陈文泗等. 交通运输用铝合金材料研究进展 [J]. 有色金属加工, 2016, 45(5): 15
4 Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
4 张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
5 Zhou D W, Peng Y, Xu S H, et al. Microstructure and mechanical property of steel/Al alloy laser welding with Sn powder addition [J]. Acta Metall. Sin., 2013, 49: 959
5 周惦武, 彭 艳, 徐少华等. 添加Sn粉激光焊接钢/铝合金异种金属的显微组织与性能 [J]. 金属学报, 2013, 49: 959
6 Pan F, Cui L, Qian W, et al. Microstructures and mechanical properties of dual-beam laser keyhole welded joints of aluminum alloys to stainless steels [J]. Acta Metall. Sin., 2016, 52: 1388
6 潘 峰, 崔 丽, 钱 伟等. 铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能 [J]. 金属学报, 2016, 52: 1388
7 Jin P, Sui R, Li F X, et al. Reactive wetting of TC4 titanium alloy by molten 6061 Al and 4043 Al alloys [J]. Acta Metall. Sin., 2017, 53: 479
7 靳 鹏, 隋 然, 李富祥等. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿 [J]. 金属学报, 2017, 53: 479
8 Chen L, Zhao G Q, Gong J, et al. Hot deformation behaviors and processing maps of 2024 aluminum alloy in as-cast and homogenized states [J]. J. Mater. Eng. Perform., 2015, 24: 5002
9 Liu Z L, Cui H T, Ji S D, et al. Improving joint features and mechanical properties of pinless fiction stir welding of alcald 2A12-T4 aluminum alloy [J]. J. Mater. Sci. Technol., 2016, 32: 1372
10 Bai J Y, Fan C L, Yang Y C, et al. Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition [J]. Trans. China Weld. Inst., 2016, 37(6): 124
10 柏久阳, 范成磊, 杨雨晨等. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征 [J]. 焊接学报, 2016, 37(6): 124
11 Liu Y B, Sun Q J, Jiang Y L, et al. Rapid prototyping process based on cold metal transfer arc welding technology [J]. Trans. China Weld. Inst., 2014, 35(7): 1
11 刘一搏, 孙清洁, 姜云禄等. 基于冷金属过渡技术快速成形工艺 [J]. 焊接学报, 2014, 35(7): 1
12 Gu J l, Ding J L, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys [J]. J. Mater. Process. Technol., 2016, 230: 26
13 Colegrove P A, Donoghue J, Martina F, et al. Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components [J]. Scr. Mater., 2017, 135: 111
14 Wang H, Kovacevic R. Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy [J]. Proc. Inst. Mech. Eng., 2001, 215B: 1519
15 Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: Process control and microstructure [J]. Mater. Manuf. Process., 2002, 17: 103
16 Sun C S, Zhang Z D, Liu L M. Microstructure and mechanical properties of 5356 aluminum alloy thin wall parts manufactured by laser induced MIG arc additive [J]. Weld. Technol., 2017, 46(5): 47
16 孙承帅, 张兆栋, 刘黎明. 激光诱导MIG电弧增材制造5356铝合金薄壁零件组织及力学性能 [J]. 焊接技术, 2017, 46(5): 47
17 Zhang C, Gao M, Zeng X Y. Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy [J]. J. Mater. Process. Technol., 2019, 271: 85
18 Long Q, Lu F H, Zhang Y L, et al. Present research status and new development of the welding technologies of Mg/Al dissimilar metals [J]. Light Met., 2018, (2): 47
18 龙 琼, 路坊海, 张玉兰等. Mg/Al异种金属焊接技术的研究现状及最新进展 [J]. 轻金属, 2018, (2): 47
19 Dai Q S, Ou S S, Deng Y L, et al. Microstructure evolution and grain size model of 5083 aluminum alloy during hot deformation [J]. Mater. Rev., 2017, 31(14): 143
19 戴青松, 欧世声, 邓运来等. 5083铝合金的热变形组织演变及晶粒度模型 [J]. 材料导报, 2017, 31(14): 143
20 Liang Y, Shen J Q, Hu S S, et al. Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding [J]. J. Mater. Process. Technol., 2018, 255: 161
21 Dubyna A, Mogucheva A, Kaibyshev R. Hall-Petch relationship in an Al-Mg-Sc alloy subjected to ECAP [J]. Adv. Mater. Res., 2014, 922: 120
22 Humphreys F J, Prangnell P B, Priestner R. Fine-grained alloys by thermomechanical processing [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 15
23 Horgar A, Fostervoll H, Nyhus B, et al. Additive manufacturing using WAAM with AA5183 wire [J]. J. Mater. Process. Technol., 2018, 259: 68
24 Sha G, Marceau R K W, Gao X, et al. Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes [J]. Acta Mater., 2011, 59: 1659
25 Pang Y G, Wang Z T. Application of Al and Al alloys in high-tech and new weapons [J]. Light Alloy Fab. Technol., 2018, 46(6): 1
25 庞彦国, 王祝堂. 铝及铝合金在高新兵器中的应用 [J]. 轻合金加工技术, 2018, 46(6): 1
26 Gu J L, Wang X S, Bai J, et al. Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling [J]. Mater. Sci. Eng., 2018, A712: 292
27 Boeira A P, Ferreira I L, Garcia A. Alloy composition and metal/mold heat transfer efficiency affecting inverse segregation and porosity of as-cast Al-Cu alloys [J]. Mater. Des., 2009, 30: 2090
28 Gu J L, Ding J L, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys [J]. J. Mater. Process. Technol., 2016, 230: 26
29 Cong B Q, Ding J L, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1593
30 Bai J Y, Yang C L, Lin S B, et al. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 479
31 Liu P W, Wang Z, Xiao Y H, et al. Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing [J]. Add. Manuf., 2019, 26: 22
32 Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing [J]. Acta Mater., 2019, 168: 261
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.