Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 575-585    DOI: 10.11900/0412.1961.2020.00292
  研究论文 本期目录 | 过刊浏览 |
低应变预变形对变温马氏体相变行为的影响规律及作用机制
王金亮, 王晨充, 黄明浩, 胡军, 徐伟()
东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation
WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
Jinliang WANG, Chenchong WANG, Minghao HUANG, Jun HU, Wei XU. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. Acta Metall Sin, 2021, 57(5): 575-585.

全文: PDF(10856 KB)   HTML
摘要: 

以321型不锈钢为实验材料,利用伪原位观察技术研究了300~4 K连续冷却过程中低应变预变形对变温马氏体相变行为的影响规律及作用机制。结果表明,在连续冷却过程中,低应变预变形提高了马氏体相变开始温度和最终的马氏体转变量,同时也加速了整个连续冷却过程中的马氏体相变。通过伪原位观察揭示了预变形引入的滑移带能有效地提供温度诱发ε-马氏体相变的形核质点,促进ε-马氏体转变,进而提高连续冷却过程中α'-马氏体相变的形核质点数量,促进α'-马氏体相变,完善了预变形引入的位错缺陷直接提供α'-马氏体相变的形核质点,促进α'-马氏体相变这一理论。此外,通过对滑移带缺陷的形核行为和形核优先性分析,揭示形变引入的滑移带与温度诱发的缺陷奥氏体具有相同的形核行为,但预变形引入的滑移带具有更高的形核优先性。同时对预变形试样中α'-马氏体的晶体学特征分析发现,滑移带能有效地改变α'-马氏体的变体选择,进而改变α'-马氏体的相变织构。

关键词 预变形马氏体相变深冷处理奥氏体不锈钢伪原位EBSD    
Abstract

Pre-deformation with low strain can effectively control the thermal stability of metastable austenite. Till now, research has mainly focused on the effect of pre-deformation on martensitic transformation at one or more temperatures. However, research is still lacking on the effect of pre-deformation on the temperature at which martensite is formed (Ms), the final martensite content, and the transformational kinetics during continuous cooling. Furthermore, the mechanism underlying how pre-deformation affects martensitic transformation has not been reported. In this work, the influence rule and the corresponding effect of pre-deformation with low strain on martensitic transformation induced by temperature under continuous cooling from 300 K to 4 K was studied with 321 stainless steel samples by using the quasi-in-situ observation technique. The results show that Ms and the final amount of martensite increased under pre-deformation with low strain, and the martensitic transformation during continuous cooling was simultaneously accelerated. The quasi-in-situ observation demonstrated that the slip bands introduced by pre-deformation effectively provided nucleation sites for ε-martensite transformation. Accordingly, the formed ε-martensite increased the number of α'-martensite nucleation sites during continuous cooling, and finally promoted α'-martensite transformation. This builds on the theory proposed by other researchers that the dislocation defects introduced by pre-deformation directly provide the nucleation sites for α'-martensite transformation, and thus, promote martensitic transformation. In addition, by analyzing the nucleation behavior and nucleation priority at slip band defects, it is shown that the nucleation behavior of slip bands introduced by the pre-deformation was similar to that of faulted austenite induced by temperature. However, it is worth noting that the slip bands introduced by pre-deformation had a relatively higher nucleation priority. The crystallography of α'-martensite in the pre-deformed samples was analyzed, and it was found that the slip bands effectively changed the variant selection of α'-martensite so that the texture of α'-martensite was modified. This study advances the existing theory of martensitic transformation and provides theoretical guidance for the proactive control of temperature-induced martensitic transformation.

Key wordspre-deformation    martensitic transformation    cryogenic treatment    austenite stainless steel    quasi-in-situ EBSD
收稿日期: 2020-08-06     
ZTFLH:  TG111.8  
基金资助:国家自然科学基金项目(U1808208);国家重点研发计划项目(2017YFB0703001)
作者简介: 王金亮,男,1988年生,博士
图1  室温变形5%前后321型不锈钢试样显微组织的ECCI-SEM像
图2  预变形引入缺陷的形貌及晶体结构(a) TEM image and corresponding SAED pattern (inset)(b) t-EBSD band contrast map(c) corresponding t-EBSD phase map of Fig.2b, where the blue area, white area, and red area refer to austenite, ε-martensite, and α'-martensite, respectively
图3  预变形与未变形321型不锈钢试样在深冷处理过程中α'-马氏体的含量及相变速率
图4  退火态321型不锈钢试样在预变形+深冷处理过程中的显微组织演化(a) EBSD band contrast map of annealed sample(b) SE-SEM image of sample subjected to pre-deformation of 5%(c) SE-SEM image of sample subjected to pre-deformation of 5% and cryogenic treatment(d) corresponding EBSD band contrast map of Fig.4c (Grey areas, white areas, and red areas represent the austenite, ε-martensite, and α'-martensite, respectively)
图5  321型不锈钢预变形试样深冷处理后ε-马氏体的晶体学特征(a) ε-martensite inverse pole figure (IPF) map obtained by EBSD for the directions parallel to the rolling direction of the sample(b) ε-martensite IPF map for the directions parallel to the tangential direction of the sample
图6  321型不锈钢预变形试样深冷处理后α'-马氏体的晶体学特征(a) α'-martensite IPF map obtained by EBSD for the directions parallel to the rolling direction of the sample(b) α'-martensite IPF map for the directions parallel to the tangential direction of the sample
图7  奥氏体、ε-马氏体和α'-马氏体取向的低指数极图(a) pole figure of γ (b) pole figure of ε-martensite (c) pole figure of α'-martensite
1 Zhou T P, Wang C Y, Wang C, et al. Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel [J]. Mater. Sci. Eng., 2020, A798: 140147
2 He B B, Pan S, Huang M X. Extra work hardening in room-temperature quenching and partitioning medium Mn steel enabled by intercritical annealing [J]. Mater. Sci. Eng., 2020, A797: 140106
3 de Knijf D D, Petrov R, Föjer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng., 2014, A615: 107
4 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
5 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
6 Yang G, Huang C X, Wu S D, et al. Strain-induced martensitic transformation in 304L austenitic stainless steel under ECAP deformation [J]. Acta Metall. Sin., 2009, 45: 906
6 杨 钢, 黄崇湘, 吴世丁等. ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变 [J]. 金属学报, 2009, 45: 906
7 Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling [J]. Acta Metall. Sin., 2018, 54: 859
7 阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究 [J]. 金属学报, 2018, 54: 859
8 Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
8 邵成伟, 惠卫军, 张永健等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191
9 van der Zwaag S, Zhao L, Kruijver S O, et al. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels [J]. ISIJ Int., 2002, 42: 1565
10 Garrison Jr W M, Brooks J A. The thermal and mechanical stability of austenite in the low carbon martensitic steel PH 13-8 [J]. Mater. Sci. Eng., 1991, A149: 65
11 Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta Metall. Sin., 2020, 56: 459
11 徐 伟, 黄明浩, 王金亮等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
12 van Bohemen S M C, Sietsma J. Effect of composition on kinetics of athermal martensite formation in plain carbon steels [J]. Mater. Sci. Technol., 2009, 25: 1009
13 Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
14 Chen S, Wang C C, Shan L Y, et al. Revealing the conditions of bainitic transformation in quenching and partitioning steels [J]. Metall. Mater. Trans., 2019, 50A: 4037
15 Song C H, Yu H, Li L L, et al. The stability of retained austenite at different locations during straining of I&Q&P steel [J]. Mater. Sci. Eng., 2016, A670: 326
16 Le Houillier R, Bégin G, Dubé A. A study of the peculiarities of austenite during the formation of bainite [J]. Metall. Trans., 1971, 2: 2645
17 Brofman P J, Ansell G S. On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys [J]. Metall. Trans., 1983, 14A: 1929
18 Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature [J]. Scr. Mater., 2009, 60: 493
19 Fiedler H C, Averbach B L, Cohen M. Effect of deformation on the martensitic transformation in stainless steels [J]. Trans. ASM, 1955, 47: 267
20 Breedis J F. Influence of dislocation substructure on the martensitic transformation in stainless steel [J]. Acta Metall., 1965, 13: 239
21 Lagneborgj R. The martensite transformation in 18%Cr-8%Ni steels [J]. Acta Metall., 1964, 12: 823
22 Strife J R, Carr M J, Ansell G S. The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe-Ni-Cr-C alloys [J]. Metall. Trans., 1977, 8A: 1471
23 Thadhani N N, Meyers M A. Kinetics of isothermal martensitic transformation [J]. Prog. Mater. Sci., 1986, 30: 1
24 Pati S R, Cohen M. Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy [J]. Acta Metall., 1971, 19: 1327
25 Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
26 Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations [J]. Metall. Trans., 1976, 7A: 1905
27 Tian Y, Lin S, Ko J Y P, et al. Micromechanics and microstructure evolution during in situ uniaxial tensile loading of TRIP-assisted duplex stainless steels [J]. Mater. Sci. Eng., 2018, A734: 281
28 Olson G B, Cohen M. Stress-assisted isothermal martensitic transformation: Application to TRIP steels [J]. Metall. Trans., 1982, 13A: 1907
29 Lecroisey F, Pineau A. Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system [J]. Metall. Mater. Trans., 1972, 3B: 391
30 Murr L E, Staudhammer K P, Hecker S S. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study [J]. Metall. Trans., 1982, 13A: 627
31 Wang J L, Xi X H, Li Y, et al. New insights on nucleation and transformation process in temperature-induced martensitic transformation [J]. Mater. Charact., 2019, 151: 267
32 Wang J L, Huang M H, Xi X H, et al. Characteristics of nucleation and transformation sequence in deformation-induced martensitic transformation [J]. Mater. Charact., 2020, 163: 110234
33 Tian Y, Lienert U, Borgenstam A, et al. Martensite formation during incremental cooling of Fe-Cr-Ni alloys: An in-situ bulk X-ray study of the grain-averaged and single-grain behavior [J]. Scr. Mater. 2017, 136: 124
34 Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54: 1279
35 Jafarian H, Borhani E, Shibata A, et al. Variant selection of martensite transformation from ultrafine-grained austenite in Fe-Ni-C alloy [J]. J. Alloys Compd., 2013, 577: S668
36 Chiba T, Miyamoto G, Furuhara T. Variant selection of lenticular martensite by ausforming [J]. Scr. Mater., 2012, 67: 324
37 Tian Y, Borgenstam A, Hedström P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys [J]. J. Alloys Compd., 2018, 766: 131
38 Swarr T, Krauss G. The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy [J]. Metall. Trans., 1976, 7A: 41
39 Inoue T, Matsuda S, Okamura Y, et al. The fracture of a low carbon tempered martensite [J]. Trans. Japan Inst. Met., 1970, 11: 36
40 Kelly P M. The martensite transformation in steels with low stacking fault energy [J]. Acta Metall., 1965, 13: 635
41 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
42 Schramm R E, Reed R P. Stacking fault energies of seven commercial austenitic stainless steels [J]. Metall. Trans., 1975, 6A: 1345
43 Cohen M, Olson G B. Martensitic nucleation and the role of the nucleation defect [J]. Suppl. Trans. JIM, 1976, 17: 93
44 Kaufman L, Cohen M. Thermodynamics and kinetics of martensitic transformations [J]. Prog. Met. Phys., 1958, 7: 165
45 Gu Q, van Humbeeck J, Delaey L. Review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys [J]. J. Phys. IV, 1994, 4: 135
46 Hoshino Y, Nakamura S, Ishikawa N, et al. In-situ observation of partial dislocation motion during γε transformation in a Fe-Mn-Si Shape memory alloy [J]. Mater. Trans., JIM, 1992, 33: 253
47 Shimizu K, Oka M, Wayman C M. The association of martensite platelets with austenite stacking faults in an Fe-8Cr-1C alloy [J]. Acta Metall., 1970, 18: 1005
48 Sato A, Kasuga H, Mori T. Effect of external stress on the γεα martensitic transformation examined by a double tensile deformation [J]. Acta Metall., 1980, 28: 1223
49 Li X, Chen L Q, Zhao Y, et al. Influence of manganese content on ε-/α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Mater. Des., 2018, 142: 190
50 Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels [J]. Acta Mater., 2015, 84: 330
51 Pisarik S T, van Aken D C. Crystallographic orientation of the εα′ martensitic (athermal) transformation in a FeMnAlSi steel [J]. Metall. Mater. Trans., 2014, 45A: 3173
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[7] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[9] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[10] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[11] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[12] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[13] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[14] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[15] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.