Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 586-594    DOI: 10.11900/0412.1961.2020.00274
  研究论文 本期目录 | 过刊浏览 |
过热度对轴承钢凝固组织整体形貌特征及渗透率的影响
曹江海1,2, 侯自兵1,2(), 郭中傲1,2, 郭东伟1,2, 唐萍1,2
1.重庆大学 材料科学与工程学院 重庆 400044
2.重庆大学 钒钛冶金及新材料重庆市重点实验室 重庆 400044
Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet
CAO Jianghai1,2, HOU Zibing1,2(), GUO Zhongao1,2, GUO Dongwei1,2, TANG Ping1,2
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, China
引用本文:

曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
Jianghai CAO, Zibing HOU, Zhongao GUO, Dongwei GUO, Ping TANG. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. Acta Metall Sin, 2021, 57(5): 586-594.

全文: PDF(11808 KB)   HTML
摘要: 

引入分形维数和比表面积对GCr15轴承钢连铸方坯的凝固组织整体形貌特征进行定量描述,并基于此计算枝晶通道的渗透率。结果表明,分形维数可描述凝固组织形貌的自相似复杂程度,比表面积可描述凝固组织的粗化程度。与高过热度(35℃)相比,低过热度(20℃)下生产的铸坯其分形维数较小,比表面积较大,且等轴晶区的渗透率较小;即低过热度时富集溶质的液相在枝晶间的流动阻力大,更有利于铸坯宏观偏析缺陷的控制。此外,为有效抑制高过热度时铸坯宏观偏析缺陷的形成,应在尽可能保证等温凝固的条件下通过调节工艺参数增大铸坯等轴晶区的冷却速率。

关键词 过热度凝固组织分形维数比表面积渗透率轴承钢    
Abstract

As a typical bearing steel, GCr15 steel tends to solidify over a wide temperature range during casting because of its high carbon content. The size of the mushy zone is relatively large, causing macrosegregation and porosity defects in bearing steel. The morphology of the solidification structure plays an important role in governing macrosegregation severity. Solidification structures have conventionally been characterized by measuring the primary or secondary dendrite arm spacing in a dendritic network, but these measures do not adequately describe the branched appearance of secondary and tertiary arms. In this work, fractal dimension and specific surface area have been introduced, and the solidification structure integral morphology characteristics of different locations in the continuous casting billet of GCr15 bearing steel have been quantitatively investigated. Then, the permeability of the interdendritic channels were calculated based on fractal dimension and specific surface area. The size of the billets was 220 mm × 220 mm, and the sampling location was in the cross section of the billet. Two superheats (20 and 35oC) were considered for studying the integral characteristics of the solidification structure. First, fractal dimension can describe the self-similar complexity of the solidification structure, and specific surface area can describe dendritic coarsening. Second, it was determined that the fractal dimension was larger and the specific surface area was smaller at 35oC superheat compared with 20oC superheat. This indicates that the self-similar complexity of dendrites is larger, and the dendrite coarsening is more significant at high superheating. Finally, the permeability in the equiaxed grain zone calculated using fractal dimension and specific surface area is lower at 20oC superheat. The smaller the permeability, the greater the flow resistance of the liquid, which is more conducive to the control of the macrosegregation defects. In addition, to effectively restrain the formation of macrosegregation defects at high superheat, the cooling rate in the equiaxed grains zone should increase by adjusting the process parameters under isothermal solidification conditions.

Key wordssuperheat    solidification structure    fractal dimension    specific surface area    permeability    bearing steel
收稿日期: 2020-07-22     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金委员会-中国宝武钢铁集团有限公司钢铁联合研究基金项目(U1860101);重庆市基础科学和前沿技术研究专项项目(cstc2017jcyjAX0019)
作者简介: 曹江海,男,1994年生,博士生
图1  铸坯横断面取样位置示意图
图2  过热度为20℃时铸坯横断面不同位置的低倍组织
图3  过热度为35℃时铸坯横断面不同位置的低倍组织
图4  数盒子法计算凝固组织分形维数的步骤(以过热度20℃的1#试样为例)(a) the original macrostructure(b) box grid overlaid on the macrostructure(c) relation between lnN(r) and lnr for fractal dimension (r—mesh size, N(r)—the number of meshes, R2—fitting coefficient)
Sample20oC35oC
DR2DR2
1#1.61060.99761.67460.9991
2#1.63620.99761.68560.9990
3#1.66560.99761.69110.9987
4#1.70330.99741.76510.9990
5#1.72000.99791.76800.9989
6#1.71440.99791.75490.9988
7#1.75680.99871.78200.9991
8#1.76720.99901.79140.9992
9#1.75780.99861.77290.9989
10#1.77980.99871.80470.9992
11#1.77450.99871.81400.9993
12#1.74680.99851.81440.9993
13#1.73720.99821.76660.9989
14#1.70850.99741.76570.9990
15#1.73100.99801.77750.9990
16#1.74650.99821.73800.9982
17#1.74280.99831.72230.9986
18#1.68300.99811.72020.9988
19#1.67150.99811.71750.9987
20#1.67660.99841.73430.9990
表1  20和35℃下铸坯不同位置的凝固组织分形维数(D)及对应的拟合系数(R2)
图5  过热度为20和35℃时铸坯不同位置的分形维数
图6  过热度为20和35℃时铸坯不同位置的比表面积
图7  过热度对分形维数和比表面积的影响
图8  分形维数与比表面积的关系
图9  等轴晶区渗透率的变化
1 Pickering E J. Macrosegregation in steel ingots: The applicability of modelling and characterisation techniques [J]. ISIJ Int., 2013, 53: 935
2 Choudhary S K, Ganguly S. Morphology and segregation in continuously cast high carbon steel billets [J]. ISIJ Int., 2007, 47: 1759
3 Mayer F, Wu M, Ludwig A. On the formation of centreline segregation in continuous slab casting of steel due to bulging and/or feeding [J]. Steel Res. Int., 2010, 81: 660
4 Flemings M C. Our understanding of macrosegregation: Past and present [J]. ISIJ Int., 2000, 40: 833
5 Zhong X T, Rowenhorst D J, Beladi H, et al. The five-parameter grain boundary curvature distribution in an austenitic and ferritic steel [J]. Acta Mater., 2017, 123: 136
6 Bisang U, Bilgram J H. The fractal dimension of xenon dendrites [J]. J. Cryst. Growth, 1996, 166: 207
7 González-Cinca R, Ramírez-Piscina L. Numerical study of the shape and integral parameters of a dendrite [J]. Phys. Rev., 2004, 70E: 051612
8 Mandelbrot B B. The Fractal Geometry of Nature [M]. New York: Freeman Press, 1982: 206
9 Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension [J]. Science, 1967, 156: 636
10 Zaiser M, Bay K, Hähner P. Fractal analysis of deformation-induced dislocation patterns [J]. Acta Mater., 1999, 47: 2463
11 Chang Q, Chen D L, Ru H Q, et al. Three-dimensional fractal analysis of fracture surfaces in titanium-iron particulate reinforced hydroxyapatite composites: Relationship between fracture toughness and fractal dimension [J]. J. Mater. Sci., 2011, 46: 6118
12 Kobayashi S, Maruyama T, Tsurekawa S, et al. Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel [J]. Acta Mater., 2012, 60: 6200
13 Long Q Y, Wen Y H, Zhu Z, et al. Sierpinski fractal description of the martensitic transformation [J]. Philos. Mag., 1993, 68A: 885
14 Hou Z B, Cao J H, Chang Y, et al. Morphology characteristics of carbon segregation in die steel billet by ESR based on fractal dimension [J]. Acta Metall. Sin., 2017, 53: 769
14 侯自兵, 曹江海, 常 毅等. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究 [J]. 金属学报, 2017, 53: 769
15 Yang A M, Xiong Y H, Liu L. Fractal characteristics of dendrite and cellular structure in nickel-based superalloy at intermediate cooling rate [J]. Sci. Technol. Adv. Mater., 2001, 2: 101
16 Ishida H, Natsume Y, Ohsasa K. Characterization of dendrite morphology for evaluating interdendritic fluidity based on phase-field simulation [J]. ISIJ Int., 2009, 49: 37
17 Cao J H, Hou Z B, Guo D W, et al. Morphology characteristics of solidification structure in high-carbon steel billet based on fractal theory [J]. J. Mater. Sci., 2019, 54: 12851
18 Cao J H, Hou Z B, Guo D W, et al. Fractal morphology characteristics of solidification structure in electroslag remelting billet of die steel by ESR [J]. J. Iron Steel Res., 2019, 31: 286
18 曹江海, 侯自兵, 郭东伟等. 模具钢电渣重熔铸坯凝固组织形貌的分形特征 [J]. 钢铁研究学报, 2019, 31: 286
19 Hou Z B, Jiang F, Cheng G G. Solidification structure and compactness degree of central equiaxed grain zone in continuous casting billet using cellular automaton-finite element method [J]. ISIJ Int., 2012, 52: 1301
20 Dubuc B, Quiniou J, Roques-Carmes C, et al. Evaluating the fractal dimension of profiles [J]. Phys. Rev., 1989, 39A: 1500
21 Genau A L, Freedman A C, Ratke L. Effect of solidification conditions on fractal dimension of dendrites [J]. J. Cryst. Growth, 2013, 363: 49
22 Kasperovich G, Genau A, Ratke L. Mushy zone coarsening in an AlCu30 alloy accelerated by a rotating magnetic field [J]. Metall. Mater. Trans., 2011, 42A: 1657
23 Wang W, Hou Z B, Chang Y, et al. Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio [J]. J. Iron Steel Res. Int., 2018, 25: 9
24 Zhu M F, Xing L K, Fang H, et al. Progresses in dendrite coarsening during solidification of alloys [J]. Acta Metall. Sin., 2018, 54: 789
24 朱鸣芳, 邢丽科, 方 辉等. 合金凝固枝晶粗化的研究进展 [J]. 金属学报, 2018, 54: 789
25 Tiller W A, Jackson K A, Rutter J W, et al. The redistribution of solute atoms during the solidification of metals [J]. Acta Metall., 1953, 1: 428
26 Aritaka E, Esaka H, Shinozuka K. Mechanism for complex morphology due to mechanical vibration [J]. ISIJ Int., 2016, 56: 1413
27 Whisler N J, Kattamis T Z. Dendritic coarsening during solidification [J]. J. Cryst. Growth, 1972, 15: 20
28 Marsh S P, Glicksman M E. Overview of geometric effects on coarsening of mushy zones [J]. Metall. Mater. Trans., 1996, 27A: 557
29 Hu H Q. Principle of Metal Solidification [M]. 2nd Ed., Beijing: Mechanical Industry Press, 2000: 210
29 胡汉起. 金属凝固原理 [M]. 第2版,北京: 机械工业出版社, 2000: 210
30 Carman P C. Flow of Gases Through Porous Media [M]. London: Butterworth Scientific Publications, 1956: 10
31 Khajeh E, Maijer D M. Physical and numerical characterization of the near-eutectic permeability of aluminum-copper alloys [J]. Acta Mater., 2010, 58: 6334
32 Sun Z, Logé R E, Bernacki M. 3D finite element model of semi-solid permeability in an equiaxed granular structure [J]. Comput. Mater. Sci., 2010, 49: 158
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[3] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[5] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[6] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[7] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[8] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[9] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[10] 俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[11] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[12] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[13] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[14] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[15] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.