Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 675-683    DOI: 10.11900/0412.1961.2020.00137
  研究论文 本期目录 | 过刊浏览 |
Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响
孙小钧1,2, 何杰1,2(), 陈斌1,2, 赵九洲1,2, 江鸿翔1, 张丽丽1, 郝红日1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses
SUN Xiaojun1,2, HE Jie1,2(), CHEN Bin1,2, ZHAO Jiuzhou1,2, JIANG Hongxiang1, ZHANG Lili1, HAO Hongri1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
Xiaojun SUN, Jie HE, Bin CHEN, Jiuzhou ZHAO, Hongxiang JIANG, Lili ZHANG, Hongri HAO. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. Acta Metall Sin, 2021, 57(5): 675-683.

全文: PDF(7287 KB)   HTML
摘要: 

在Zr60Cu40单相非晶合金中引入与合金次要组元Cu具有正混合焓的Fe元素,设计了Zr60Cu40-xFex相分离非晶合金,研究了Zr60Cu40-xFex三元合金的液-液相分离行为。结果表明,二元Cu-Fe合金的液态组元不混溶区域可以延伸至三元Zr60Cu40-xFex合金中;在快速凝固条件下,该合金在冷却过程中会发生液-液相分离,形成富Cu和富Fe两液相;基于Zr60Cu40-xFex合金液-液相分离凝固特征,考察了Fe含量对Zr60Cu40-xFex合金组织及相结构的影响,讨论了Zr60Cu40-xFex体系组织演变及相形成机制。Zr60Cu20Fe20合金在冷却过程中液-液相分离形成的富Zr-Cu和富Zr-Fe两液相分别发生玻璃转变,最终形成了高数量密度(1024/m3数量级)的纳米富Cu非晶粒子(尺寸为2~10 nm)分布在富Fe非晶基体上的相分离非晶合金组织。研究了该合金样品的电阻性能和纳米压痕行为,讨论了Zr60Cu20Fe20合金晶化过程的电阻反常变化行为,并分析了Zr60Cu20Fe20合金的纳米尺度相分离组织结构对剪切转变区的影响。

关键词 液-液相分离难混溶合金金属玻璃电阻行为纳米压痕    
Abstract

Liquid-liquid phase separation was used to design phase-separated metallic glasses with special properties. In this work, Zr60Cu40-xFex phase-separated metallic glasses were designed by partial substitution of Cu by Fe in Zr60Cu40 metallic glass. The liquid-liquid phase separation behavior of Zr60Cu40-xFex alloy was investigated. The results show that the miscibility gap of the binary Cu-Fe system can be extended into the Zr60Cu40-xFex system and that liquid-liquid phase separation into Cu-rich and Fe-rich liquids occurred during rapid cooling. On the basis of the behavior of liquid-liquid phase separation of the Zr60Cu40-xFex system, the effect of partial substitution of Cu by Fe on the microstructure and phase formation of the Zr60Cu40-xFex alloys was investigated. The microstructure evolution and the competitive mechanism of phase formation in the as-quenched Zr60Cu40-xFex alloy were discussed. For the Zr60Cu20Fe20 alloy, liquid-liquid phase separation into Cu-rich and Fe-rich liquids and then liquid-glass transition occurred during rapid cooling and resulted in a heterogeneous structure with glassy Fe-rich matrix embedded with glassy Cu-rich nanoparticles. Considering this structure, the electrical properties and nanoindentation behavior of the as-quenched Zr60Cu20Fe20 alloy were examined. The abnormal change in electrical resistivity during crystallization and the effect of nanoscale phase separation on the shear transformation zone of the Zr60Cu20Fe20 alloy were analyzed.

Key wordsliquid-liquid phase separation    immiscible alloy    metallic glass    electrical resistivity behavior    nanoindentation
收稿日期: 2020-04-30     
ZTFLH:  TG113.11  
基金资助:国家自然科学基金项目(51774264);辽宁省自然科学基金项目(2019-MS-332)
作者简介: 孙小钧,男,1993年生,博士
图1  Zr60Cu40-xFex合金薄带样品的XRD谱及DTA曲线
SampleTg / KTx1 / KTx2 / K
Zr60Cu40650712723
Zr60Cu38Fe2658705718
Zr60Cu28Fe12653723766
Zr60Cu20Fe20-706782
Zr60Cu16Fe24-718755
表1  Zr60Cu40-xFex合金热力学参数
图2  Zr60Cu40-xFex合金薄带样品微观组织的TEM像和SAED花样
图3  计算的Zr60Cu40-xFex合金的组元液态不混溶区
图4  合金匀速升温过程中约化电阻和DSC曲线
图5  Zr60Cu20Fe20合金在673、713和813 K等温退火0.5 h前后的XRD谱
图6  Zr60Cu20Fe20合金富Zr-Fe基体及富Zr-Cu粒子在673 K等温退火0.5 h后的HRTEM像(a) glassy Fe-rich matrix (the rectangular areas indicate the formation of nanocrystals)(b) glassy Cu-rich sphere
图7  纳米压痕力-位移(P-h)曲线
SampleHardness / GPaModulus / GPamΩ / nm3
Zr60Cu20Fe206.62691.7170.009637.02
Zr60Cu406.50176.5300.014779.28
Zr75Fe258.046100.4660.025724.17
表2  合金条带的纳米压痕硬度、模量、应变速率敏感系数(m)及剪切转变区体积(Ω)
图8  蠕变拟合曲线,应变速率及硬度随蠕变时间的变化关系,及线性拟合得到的m值
1 Ratke L, Diefenbach S. Liquid immiscible alloys [J]. Mater. Sci. Eng., 1995, R15: 263
2 He J, Kaban I, Mattern N, et al. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation [J]. Sci. Rep., 2016, 6: 25832
3 Sun Q, Jiang H X, Zhao J Z, et al. Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles [J]. Acta Mater., 2017, 129: 321
4 Chen S Q, Hui K Z, Dong L Z, et al. Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification [J]. Sci. China Mater., 2020, 63: 453
5 Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders with egg-type microstructure [J]. Science, 2002, 297: 990
6 Xian A P, Zhu Y X. The development of manufacture processing for Cu-Cr contact alloy [J]. Acta Metall. Sin., 2003, 39: 225
6 冼爱平, 朱耀宵. Cu-Cr触头合金制备技术的发展 [J]. 金属学报, 2003, 39: 225
7 He J, Jiang H X, Chen S, et al. Liquid phase separation in immiscible Ag-Ni-Nb alloy and formation of crystalline/amorphous composite [J]. J. Non-Cryst. Solids, 2011, 357: 3561
8 Xi Y Y, He J, Sun X J, et al. Ni-based metallic glass composites containing Cu-rich crystalline nanospheres [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 1130
9 He J, Mattern N, Kaban I, et al. Enhancement of glass-forming ability and mechanical behavior of zirconium-lanthanide two-phase bulk metallic glasses [J]. J. Alloys Compd., 2015, 618: 795
10 Wang Z Y, He J, Yang B J, et al. Liquid-liquid phase separation and formation of two glassy phases in Zr-Ce-Co-Cu immiscible alloys [J]. Acta Metall. Sin., 2016, 52: 1379
10 王中原, 何 杰, 杨柏俊等. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成 [J]. 金属学报, 2016, 52: 1379
11 Kündig A A, Ohnuma M, Ping D H, et al. In situ formed two-phase metallic glass with surface fractal microstructure [J]. Acta Mater., 2004, 52: 2441
12 Park B J, Chang H J, Kim D H, et al. In situ formation of two amorphous phases by liquid phase separation in Y-Ti-Al-Co alloy [J]. Appl. Phys. Lett., 2004, 85: 6353
13 Chang H J, Yook W, Park E S, et al. Synthesis of metallic glass composites using phase separation phenomena [J]. Acta Mater., 2010, 58: 2483
14 Mattern N, Kühn U, Gebert A, et al. Microstructure and thermal behavior of two-phase amorphous Ni-Nb-Y alloy [J]. Scr. Mater., 2005, 53: 271
15 Han X L, Qin Y S, Qin K, et al. Glass-forming ability and early crystallization kinetics of novel Cu-Zr-Al-Co bulk metallic glasses [J]. Metals, 2016, 6: 225
16 Sun X J, He J, Chen B, et al. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys [J]. J. Mater. Sci. Technol., 2020, 44: 201
17 Sun X J, He J, Wang Z Y, et al. Liquid-liquid phase separation and two-phase bulk metallic glasses of Ce-Zr based alloys [J]. Sci. Sin. Technol., 2018, 48: 1413
17 孙小钧, 何 杰, 王中原等. Ce-Zr基合金液-液相分离机制及双相块体非晶合金研究 [J]. 中国科学: 技术科学, 2018, 48: 1413
18 Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
19 Pan J, Liu L, Chan K C. Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe [J]. Scr. Mater., 2009, 60: 822
20 He J, Zhao J Z, Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys [J]. Acta Mater., 2006, 54: 1749
21 Chen B, He J, Xi Y Y, et al. Liquid-liquid hierarchical separation and metal recycling of waste printed circuit boards [J]. J. Hazard. Mater., 2019, 364: 388
22 Chen Q, Jin Z P. The Fe-Cu system: A thermodynamic evaluation [J]. Metall. Mater. Trans., 1995, 26A: 417
23 Dreval L A, Agraval P G, Turchanin M A. Enthalpy of mixing of liquid Cu-Fe-Zr alloys at 1873 K (1600oC) [J]. Metall. Mater. Trans., 2015, 46B: 2234
24 Guo C P, Du Z M, Li C R, et al. Thermodynamic description of the Al-Fe-Zr system [J]. Calphad, 2008, 32: 637
25 Hsiao H M, Liang S M, Schmid-Fetzer R, et al. Thermodynamic assessment of the Ag-Zr and Cu-Zr binary systems [J]. Calphad, 2016, 55: 77
26 Bakke E, Busch R, Johnson W L. The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid [J]. Appl. Phys. Lett., 1995, 67: 3260
27 Deng C K, Jiang H X, Zhao J Z, et al. Study on the solidification of Ag-Ni monotectic alloy [J]. Acta Metall. Sin., 2020, 56: 212
27 邓聪坤, 江鸿翔, 赵九洲等. Ag-Ni偏晶合金凝固过程研究 [J]. 金属学报, 2020, 56: 212
28 Chung S J, Hong K T, Ok M R, et al. Analysis of the crystallization of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass using electrical resistivity measurement [J]. Scr. Mater., 2005, 53: 223
29 Haruyama O, Miyazawa T, Saida J, et al. Change in electrical resistivity due to icosahedral phase precipitation in Zr70Pd20Ni10 and Zr65Al7.5Cu7.5Ni10Ag10 glasses [J]. Appl. Phys. Lett., 2001, 79: 758
30 Li M X, Zhao S F, Zhen L, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
31 Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses [J]. Phys. Rev. Lett., 2005, 95: 245501
32 Cohen M H, Turnbull D. Molecular transport in liquids and glasses [J]. J. Chem. Phys., 1959, 31: 1164
33 Argon A S, Kuo H Y. Plastic flow in a disordered bubble raft (an analog of a metallic glass) [J]. Mater. Sci. Eng., 1979, 39: 101
34 Wang Z, Wang W H. Flow units as dynamic defects in metallic glassy materials [J]. Natl. Sci. Rev., 2019, 6: 304
35 Johnson W L, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T / Tg)2/3 temperature dependence [J]. Phys. Rev. Lett., 2005, 95: 195501
36 Pan D, Inoue A, Sakurai T, et al. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 14769
37 Nandam S H, Ivanisenko Y, Schwaiger R, et al. Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties [J]. Acta Mater., 2017, 136: 181
38 Şopu D, Ritter Y, Gleiter H, et al. Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations [J]. Phys. Rev., 2011, 83B: 100202
[1] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[2] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[3] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[4] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[5] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[6] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[7] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[8] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[9] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[10] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[11] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[12] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[13] 陈斌,何杰,孙小钧,赵九洲,江鸿翔,张丽丽,郝红日. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收[J]. 金属学报, 2019, 55(6): 751-761.
[14] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[15] 张林,满田囡,王恩刚. 弥散固态颗粒对Al-Bi合金液-液相分离过程的影响[J]. 金属学报, 2019, 55(3): 399-409.