Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1273-1280    DOI: 10.11900/0412.1961.2018.00125
  本期目录 | 过刊浏览 |
微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变
向雪梅, 赖玉香, 刘春辉, 陈江华()
湖南大学材料科学与工程学院 长沙 410082
Sn-Induced Modification of the Precipitation Pathways upon High-Temperature Ageing in an Al-Mg-Si Alloy
Xuemei XIANG, Yuxiang LAI, Chunhui LIU, Jianghua CHEN()
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
全文: PDF(4350 KB)   HTML
摘要: 

研究了Sn (0.2%,质量分数)的添加对一种富Mg的Al-Mg-Si合金经历不同时间的自然时效后在250 ℃下人工时效过程中的时效硬化行为的影响,并利用TEM观察揭示了其微观机理。结果表明,在Al-Mg-Si合金中添加微量Sn (0.2%)可以改变合金250 ℃人工时效的强化相析出路径:当直接进行人工时效时,析出相主要为β"相;当进行自然时效+人工时效处理时,随着自然时效时间的延长,β"相的比例不增反降,而β'相的比例不降反增,但最终β"相的比例仍高于β'相的比例。Sn对强化相析出路径的改变,可以明显提高合金高温人工时效的硬化能力。Sn的添加提高了基体中有效的Si浓度,从而改变了不含Sn合金的强化相析出路径。

关键词 Al-Mg-Si合金时效析出微量元素透射电镜    
Abstract

The 6xxx series aluminum alloys (Al-Mg-Si(-Cu) alloys) are widely used for the industrial applications in the lightweight construction, automotive and architecture because of their light weight, medium to high strength, excellent formability and good corrosion resistance. It has been reported that trace Sn addition can accelerate ageing kinetics and increase peak hardness of Al-Mg-Si alloys when ageing at high temperatures (>210 ℃). However, the mechanism about it has not been investigated comprehensively yet. For Mg-excess Al-Mg-Si alloys, when aged at 250 ℃, the alloys are hardened by the β'-precipitates. While after applying natural ageing prior to artificial ageing, the β"-precipitates will be formed, with the percentage of which increasing with natural ageing time, and eventually become the main hardening precipitates. In this work, the effect of Sn on natural ageing and subsequent artificial ageing at 250 ℃ in a Mg-rich Al-Mg-Si alloy was investigated by Vickers microhardness measurements and TEM. The results show that adding a small amount (0.2%, mass fraction) of Sn in the Mg-rich Al-Mg-Si alloy can modify the precipitation pathways upon 250 ℃-ageing: when the alloy is directly artificially aged, the β"-precipitates are dominant, whereas when the alloy is subjected to "natural ageing+artificial ageing" treatment, upon prolonged natural ageing time, the percentage of β"-precipitates would not increase but decrease and that of β'-precipitates would not decrease but increase, but ultimately the β"-precipitates are still dominant over the β'-precipitates. The Sn-induced modification of the precipitation pathways can significantly enhance the age-hardening potential of the alloy upon high-temperature artificial ageing. The addition of Sn increases the effective Si-concentration in the matrix, and consequently changes the precipitation pathways in the Sn-free alloy, which is different from the explanation proposed in literatures.

Key wordsAl-Mg-Si alloy    ageing    precipitation    trace element    transmission electron microscopy
收稿日期: 2018-04-04     
ZTFLH:  TG113  
基金资助:国家重点研发计划项目No.2016YFB0300801,国家自然科学基金项目Nos.11427806、51471067和51671082
作者简介:

作者简介 向雪梅,女,1992年生,硕士生

引用本文:

向雪梅, 赖玉香, 刘春辉, 陈江华. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变[J]. 金属学报, 2018, 54(9): 1273-1280.
Xuemei XIANG, Yuxiang LAI, Chunhui LIU, Jianghua CHEN. Sn-Induced Modification of the Precipitation Pathways upon High-Temperature Ageing in an Al-Mg-Si Alloy. Acta Metall Sin, 2018, 54(9): 1273-1280.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00125      或      https://www.ams.org.cn/CN/Y2018/V54/I9/1273

图1  Al-Mg-Si合金和Al-Mg-Si-Sn合金自然时效硬化曲线
图2  Al-Mg-Si合金[20]和Al-Mg-Si-Sn合金经过不同时间的自然时效后在250 ℃下人工时效的硬化曲线
图3  经过不同时间的自然时效后再进行250 ℃、5 min峰值时效处理的Al-Mg-Si-Sn合金TEM像及对应的析出相尺寸分布
图4  经过不同时间的自然时效后再进行250 ℃、5 min峰值时效处理的Al-Mg-Si-Sn合金的主要析出相的HRTEM像及对应的FFT花样
图5  经过不同时间自然时效后再进行250 ℃峰值时效处理的Al-Mg-Si合金[20]和Al-Mg-Si-Sn合金中β"相与β’相的相对比例
图6  基体中Si(+Sn)浓度(CSi(+Sn))对β”相及β’相形核能垒(?G)的影响示意图[11]
[1] Edwards G A, Stiller K, Dunlop G L, et al.The precipitation sequence in Al-Mg-Si alloys[J]. Acta Mater., 1998, 46: 3893
[2] Marioara C D, Andersen S J, Jansen J, et al.The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 Al-Mg-Si alloy[J]. Acta Mater., 2003, 51: 789
[3] Zhang H, Li L X, Yuan D, et al.Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures[J]. Mater. Charact., 2007, 58: 168
[4] Tian N, Zhao G, Zuo L, et al.Study on the strain hardening behavior of Al-Mg-Si-Cu alloy sheet for automotive body[J]. Acta Metall. Sin., 2010, 46: 613(田妮, 赵刚, 左良等. 汽车车身用Al-Mg-Si-Cu合金薄板应变强化行为的研究[J]. 金属学报, 2010, 46: 613)
[5] Li L X, Zhou J, Zhang H.Advanced extrusion technology and application of aluminium, magnesium alloy for vehicle body[J]. J. Mech. Eng., 2012, 48(18): 35(李落星, 周佳, 张辉. 车身用铝、镁合金先进挤压成形技术及应用[J]. 机械工程学报, 2012, 48(18): 35)
[6] Zandbergen H W, Andersen S J, Jansen J.Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies[J]. Science, 1997, 277: 1221
[7] Chen J H, Costan E, van Huis M A, et al. Atomic pillar-based nanoprecipitates strengthen Al-Mg-Si alloys[J]. Science, 2006, 312: 416
[8] Vissers R, van Huis M A, Jansen J, et al. The crystal structure of the β' phase in Al-Mg-Si alloys[J]. Acta Mater., 2007, 55: 3815
[9] Ravi C, Wolverton C.First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates[J]. Acta Mater., 2004, 52: 4213
[10] Wang B, Wang X J, Song H, et al.Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy[J]. Acta Metall. Sin., 2014, 50: 685(汪波, 王晓姣, 宋辉等. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响[J]. 金属学报, 2014, 50: 685)
[11] Lai Y X, Jiang B C, Liu C H, et al.Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys[J]. J. Alloys Compd., 2017, 701: 94
[12] Pogatscher S, Antrekowitsch H, Leitner H, et al.Mechanisms controlling the artificial aging of Al-Mg-Si Alloys[J]. Acta Mater., 2011, 59: 3352
[13] de Geuser F, Lefebvre W, Blavette D. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy[J]. Philos. Mag. Lett., 2006, 86: 227
[14] Tors?ter M, Hasting H S, Lefebvre W, et al.The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys[J]. J. Appl. Phys., 2010, 108: 073527
[15] R?yset J, Stene T, S?ter J A, et al. The effect of intermediate storage temperature and time on the age hardening response of Al-Mg-Si Alloys [J]. Mater. Sci. Forum, 2006, 519-521: 239
[16] Banhart J, Chang C S T, Liang Z Q, et al. Natural aging in Al-Mg-Si alloys—A process of unexpected complexity[J]. Adv. Eng. Mater., 2010, 12: 559
[17] Yamada K, Sato T, Kamio A. Effects of quenching conditions on two-step aging behavior of Al-Mg-Si Alloys [J]. Mater. Sci. Forum, 2000, 331-337: 669
[18] Banhart J, Lay M D H, Chang C S T, et al. Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy[J]. Phys. Rev., 2011, 83B: 014101
[19] Zurob H S, Seyedrezai H.A model for the growth of solute clusters based on vacancy trapping[J]. Scr. Mater., 2009, 61: 141
[20] Liu C H, Lai Y X, Chen J H, et al.Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy[J]. Scr. Mater., 2016, 115: 150
[21] Chang C S, Wieler I, Wanderka N, et al.Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy[J]. Ultramicroscopy, 2009, 109: 585
[22] Saga M, Kikuchi M.Effect of Sn Addition on the two-step aging behavior in Al-Mg-Si Alloys for automotive application [A]. Proceedings of the 9th International Conference on Aluminium Alloys[C]. Melbourne: Institute of Material Engineering Australasia Ltd, 2004: 520
[23] Pogatscher S, Antrekowitsch H, Werinos M, et al.Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys[J]. Phys. Rev. Lett., 2014, 112: 225701
[24] Werinos M, Antrekowitsch H, Fragner W, et al.Influence of temperature on natural aging kinetics of AA6061 modified with Sn[A]. Light Metals 2015 [M]. Cham: Springer International Publishing, 2015: 367
[25] Werinos M, Antrekowitsch H, Kozeschnik E, et al.Ultrafast artificial aging of Al-Mg-Si alloys[J]. Scr. Mater., 2016, 112: 148
[26] Shishido H, Takaki Y, Kozuka M, et al.Effects of Sn addition on clustering and age-hardening behavior in a pre-aged Al-Mg-Si alloy[J]. Mater. Sci. Forum, 2016, 877: 455
[27] Pogatscher S, Antrekowitsch H, Ebner T, et al.The role of co-clusters in the artificial aging of AA6061 and AA6060 [A]. Light Metals 2012[C]. New York: Springer, 2012: 415
[28] Murayama M, Hono K.Pre-precipitate clusters and precipitation processes in Al-Mg-Si-Cu alloys[J]. Acta Mater., 1999, 47: 1537
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[3] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[4] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[5] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[6] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[7] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[8] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[9] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[10] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[11] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[12] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[13] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[14] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[15] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.