Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1428-1438    DOI: 10.11900/0412.1961.2021.00405
  本期目录 | 过刊浏览 |
自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响
巩向鹏, 伍翠兰(), 罗世芳, 沈若涵, 鄢俊
湖南大学 材料科学与工程学院 高分辨电镜中心 长沙 410012
Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC
GONG Xiangpeng, WU Cuilan(), LUO Shifang, SHEN Ruohan, YAN Jun
Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
引用本文:

巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
Xiangpeng GONG, Cuilan WU, Shifang LUO, Ruohan SHEN, Jun YAN. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. Acta Metall Sin, 2023, 59(11): 1428-1438.

全文: PDF(4508 KB)   HTML
摘要: 

针对Al-Cu-Li-Mg合金中自然时效对后续人工时效析出行为的影响机制问题,借助TEM、三维原子探针(3DAP)、三维重构(3DET)及力学性能测试等实验方法,系统研究了自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金在160℃人工时效时微观组织及力学性能的影响。结果表明,自然时效形成的富Mg或Cu-Mg原子团簇及δ'相在人工时效早期溶解,导致硬度下降;随后大量的GPB区弥散均匀析出,硬度回升,随时效时间延长T1相析出,硬度进一步增加,在96 h出现第一个强化峰;随后,GPB区溶解,合金硬度降低;继续延长时效时间,T1相体积分数及板条状S相的数量增加,合金硬度再次升高,在192 h出现第二个强化峰。研究表明自然时效原子团簇可明显改变合金的人工时效析出行为及力学性能演变规律。

关键词 Al-Cu-Li-Mg合金自然时效时效析出行为原子团簇    
Abstract

Due to their excellent combination of low density, high strength, and stiffness, third-generation Al-Cu-Li-Mg alloys are important lightweight materials in the aerospace industry. Precipitation strengthening or hardening, which is controlled by precipitates, including the structure, size, morphology, distribution, and volume fraction of precipitates, is mainly responsible for the alloy's excellent mechanical properties. The precipitates in Al-Cu-Li-Mg alloys mainly include T1, S, δ', δ'/θ'/δ', θ', GPB, and various metastable phases. In practice, the Al alloys are inevitably stored for a period at ambient temperature before subsequent processing during which natural aging occurs. Natural aging has an important effect on the precipitation behavior of subsequent artificial aging in Al-Cu-Li-Mg alloys, but the related mechanism is still highly controversial. To solve this problem, the effects of natural aging treatment on the microstructure and mechanical properties of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr alloy treated by artificial aging at 160oC were investigated using TEM, three-dimensional atom probe (3DAP), three-dimensional electron tomography (3DET), and mechanical property testing. It was discovered that natural aging significantly changed the artificial aging hardening behavior and caused two strengthening peaks in the alloy's hardness curve. The Mg-rich and Cu-Mg clusters and δ' precipitates formed during natural aging were first dissolved at the initial stage of artificial aging, which resulted in a decrease in hardness. Then, large numbers of GPB zones formed uniformly and dispersedly, followed by the formation of T1 precipitates with the increase of aging time, which caused the increase in hardness. The hardness reached its first peak value at 96 h. Following that, GPB zones dissolved and the hardness decreased again. When the aging time was continuously exceeded, the volume fraction of T1 precipitates and the number of lath-like S precipitates increased, so the hardness increased again and reached the second peak value at 192 h. In other words, the atomic clusters that form during natural aging can significantly modify precipitation behaviors and the evolution of mechanical properties during artificial aging.

Key wordsAl-Cu-Li-Mg alloy    natural aging    aging precipitation behavior    atomic cluster
收稿日期: 2021-09-17     
ZTFLH:  TG156  
基金资助:国家自然科学基金项目(51831004);国家自然科学基金项目(52171006);国家自然科学基金项目(11427806)
通讯作者: 伍翠兰,cuilanwu@hnu.edu.cn,主要从事新型铝合金微观结构及性能的研究
Corresponding author: WU Cuilan, professor, Tel: (0731)88664010, E-mail: cuilanwu@hnu.edu.cn
作者简介: 巩向鹏,男,1988年生,博士
图1  合金经单、双级时效处理后的力学性能
图2  单级时效96 h峰值试样的微观组织分析
图3  单级时效192 h峰值试样的微观组织分析
图4  自然时效7 d试样微观组织的TEM像和选区电子衍射(SAED)花样
图5  自然时效7 d试样中原子团簇的3DAP分析
图6  双级时效初期(8 h)试样HAADF-STEM像及SAED花样
图7  双级时效第一处峰值(96 h)试样的HAADF-STEM像
图8  160℃双级时效谷值(144 h)试样的HAADF-STEM像
图9  160℃双级时效第二处峰值(192 h)试样的HAADF-STEM像
图10  双级时效试样T1相尺寸统计
图11  双级时效2处峰值试样的三维重构图像及T1相的数量密度统计结果
图12  双级时效合金力学性能及微观组织演变示意图
1 Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
2 Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Mater. Sci. Eng., 1998, A257: 100
3 Gao Z, Chen J H, Duan S Y, et al. Complex precipitation sequences of Al-Cu-Li-(Mg) alloys characterized in relation to thermal ageing processes [J]. Acta Metal. Sin. (Engl. Lett.), 2016, 29: 94
doi: 10.1007/s40195-016-0366-5
4 Dorin T, Deschamps A, De Geuser F, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy [J]. Acta Mater., 2014, 75: 134
doi: 10.1016/j.actamat.2014.04.046
5 Gable B M, Zhu A W, Csontos A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. J. Light Met., 2001, 1: 1
doi: 10.1016/S1471-5317(00)00002-X
6 Rodgers B I, Prangnell P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195 [J]. Acta Mater., 2016, 108: 55
doi: 10.1016/j.actamat.2016.02.017
7 Van Smaalen S, Meetsma A, De Boer J L, et al. Refinement of the crystal structure of hexagonal Al2CuLi [J]. J. Solid State Chem., 1990, 85: 293
doi: 10.1016/S0022-4596(05)80086-6
8 Tsivoulas D, Robson J D. Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys [J]. Acta Mater., 2015, 93: 73
doi: 10.1016/j.actamat.2015.03.057
9 Gao Z, Liu J Z, Chen J H, et al. Formation mechanism of precipitate T1 in AlCuLi alloys [J]. J. Alloys Compd., 2015, 624: 22
doi: 10.1016/j.jallcom.2014.10.208
10 Liu Z R, Chen J H, Wang S B, et al. The structure and the properties of S-phase in AlCuMg alloys [J]. Acta Mater., 2011, 59: 7396
doi: 10.1016/j.actamat.2011.08.009
11 Styles M J, Hutchinson C R, Chen Y, et al. The coexistence of two S (Al2CuMg) phases in Al-Cu-Mg alloys [J]. Acta Mater., 2012, 60: 6940
doi: 10.1016/j.actamat.2012.08.044
12 Yoshimura R, Konno T J, Abe E, et al. Transmission electron microscopy study of the early stage of precipitates in aged Al-Li-Cu alloys [J]. Acta Mater., 2003, 51: 2891
doi: 10.1016/S1359-6454(03)00104-6
13 Konno T J, Hiraga K, Kawasaki M. Guinier-Preston (GP) zone revisited: Atomic level observation by HAADF-TEM technique [J]. Scr. Mater., 2001, 44: 2303
doi: 10.1016/S1359-6462(01)00909-5
14 Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
15 Ringer S P, Sakurai T, Polmear I J. Origins of hardening in aged Al-Cu-Mg-(Ag) alloys [J]. Acta Mater., 1997, 45: 3731
doi: 10.1016/S1359-6454(97)00039-6
16 Reich L, Ringer S P, Hono K. Origin of the initial rapid age hardening in an Al-1.7at.%Mg-1.1at.%Cu alloy [J]. Philos. Mag. Lett., 1999, 79: 639
doi: 10.1080/095008399176689
17 Kovarik L, Court S A, Fraser H L, et al. GPB zones and composite GPB/GPBII zones in Al-Cu-Mg alloys [J]. Acta Mater., 2008, 56: 4804
doi: 10.1016/j.actamat.2008.05.042
18 Kovarik L, Mills M J. Structural relationship between one-dimensional crystals of Guinier-Preston-Bagaryatsky zones in Al-Cu-Mg alloys [J]. Scr. Mater., 2011, 64: 999
doi: 10.1016/j.scriptamat.2011.01.033
19 Kovarik L, Mills M J. Ab initio analysis of Guinier-Preston-Bagaryatsky zone nucleation in Al-Cu-Mg alloys [J]. Acta Mater., 2012, 60: 3861
doi: 10.1016/j.actamat.2012.03.044
20 Duan S Y, Le Z, Chen Z K, et al. Li-atoms-induced structure changes of Guinier-Preston-Bagaryatsky zones in AlCuLiMg alloys [J]. Mater. Charact., 2016, 121: 207
doi: 10.1016/j.matchar.2016.09.037
21 Gong X P, Luo S F, Li S Y, et al. Dislocation-induced precipitation and its strengthening of Al-Cu-Li-Mg alloys with high Mg [J]. Acta Metal. Sin. (Engl. Lett.), 2021, 34: 597
doi: 10.1007/s40195-020-01166-1
22 Decreus B, Deschamps A, De Geuser F, et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys [J]. Acta Mater., 2013, 61: 2207
doi: 10.1016/j.actamat.2012.12.041
23 Ma P P, Zhan L H, Liu C H, et al. Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy [J]. J. Alloys Compd., 2019, 790: 8
doi: 10.1016/j.jallcom.2019.03.072
24 Li S Y, Wang Q, Chen J H, et al. The effect of thermo-mechanical treatment on the formation of T1 phase and δ'/θ'/δ' composite precipitate in an Al-Cu-Li-Mg alloy [J]. Mater. Charact., 2021, 176: 111123
doi: 10.1016/j.matchar.2021.111123
25 Liu C H, Lai Y X, Chen J H, et al. Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy [J]. Scr. Mater., 2016, 115: 150
doi: 10.1016/j.scriptamat.2015.12.027
26 Pogatscher S, Antrekowitsch H, Leitner H, et al. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys [J]. Acta Mater., 2011, 59: 3352
doi: 10.1016/j.actamat.2011.02.010
27 Martinsen F A, Ehlers F J H, Torsæter M, et al. Reversal of the negative natural aging effect in Al-Mg-Si alloys [J]. Acta Mater., 2012, 60: 6091
doi: 10.1016/j.actamat.2012.07.047
28 Deschamps A, Garcia M, Chevy J, et al. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing [J]. Acta Mater., 2017, 122: 32
doi: 10.1016/j.actamat.2016.09.036
29 Wu L, Chen Y C, Li X F, et al. Rapid hardening during natural aging of Al-Cu-Li based alloys with Mg addition [J]. Mater. Sci. Eng., 2019, A743: 741
30 Ivanov R, Deschamps A, De Geuser F. Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions [J]. Acta Mater., 2018, 157: 186
doi: 10.1016/j.actamat.2018.07.035
31 Nellist P D, Pennycook S J. Incoherent imaging using dynamically scattered coherent electrons [J]. Ultramicroscopy, 1999, 78: 111
doi: 10.1016/S0304-3991(99)00017-0
32 Hillyard S, Silcox J. Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging [J]. Ultramicroscopy, 1995, 58: 6
doi: 10.1016/0304-3991(94)00173-K
33 Wang Z M, Li H, Shen Q, et al. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel [J]. Acta Mater., 2018, 156: 158
doi: 10.1016/j.actamat.2018.06.031
34 Duan S Y. The influence of lithium on the ageing precipitation behavior of Al-Cu-Mg alloys [D]. Changsha: Hunan University, 2017
34 段石云. 合金元素锂对Al-Cu-Mg合金时效析出行为的影响 [D]. 长沙: 湖南大学, 2017
35 Zhu A W, Gable B M, Shiflet G J, et al. Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys: A computational analysis [J]. Acta Mater., 2004, 52: 3671
doi: 10.1016/j.actamat.2004.04.021
36 Zhu A W, Starke Jr E A, Shiflet G J. An FP-CVM calculation of pre-precipitation clustering in Al-Cu-Mg-Ag alloys [J]. Scr. Mater., 2005, 53: 35
doi: 10.1016/j.scriptamat.2005.03.023
37 Starink M J, Wang S C. The thermodynamics of and strengthening due to co-clusters: General theory and application to the case of Al-Cu-Mg alloys [J]. Acta Mater., 2009, 57: 2376
doi: 10.1016/j.actamat.2009.01.021
38 Ringer S P, Hono K, Sakurai T, et al. Cluster hardening in an aged Al-Cu-Mg alloy [J]. Scr. Mater., 1997, 36: 517
doi: 10.1016/S1359-6462(96)00415-0
[1] 朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.
[2] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[3] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[4] 张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山. 汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究[J]. 金属学报, 2013, 49(12): 1604-1610.
[5] 楚大锋 徐刚 王伟 彭剑超 王均安 周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J]. 金属学报, 2011, 47(3): 269-274.
[6] 赵毅; 赵九洲; 胡壮麒 . 过冷Ni3Al熔体形核的分子动力学模拟[J]. 金属学报, 2008, 44(10): 1157-1160 .
[7] 夏俊海; 羌建兵; 王英敏; 王清; 黄火根; 董闯 . Cu-Zr-Nb系铜基块体非晶合金的形成[J]. 金属学报, 2005, 41(9): 999-1003 .
[8] 董建敏; 李华; 张昌文; 潘凤春; 王永娟; 甄鹏 . Nin(n=2—6)原子簇的电子结构和磁性研究[J]. 金属学报, 2005, 41(3): 242-244 .
[9] 刘俊; 赵九洲; 胡壮麒 . Cu-50%Ni合金快速凝固过程中原子团簇演变的分子动力学模拟[J]. 金属学报, 2005, 41(2): 219-224 .
[10] 刘日平; 孙力玲; 景勤; 王文魁 . Ge73.7Ni26.3合金的原子团簇触发凝固[J]. 金属学报, 1999, 35(11): 1121-1124 .