101¯2}孪晶交汇机制的原子尺度研究" /> 101¯2}孪晶交汇机制的原子尺度研究" /> 101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy" /> 镁合金<strong>LPSO/SFs</strong>结构间<strong>{</strong><inline-formula><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mn mathvariant="normal">10</mml:mn><mml:mover accent="true"><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow><mml:mo>¯</mml:mo></mml:mover><mml:mn mathvariant="normal">2</mml:mn></math></inline-formula><strong>}</strong>孪晶交汇机制的原子尺度研究
Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 556-566    DOI: 10.11900/0412.1961.2022.00532
  研究论文 本期目录 | 过刊浏览 |
镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究
邵晓宏1, 彭珍珍2, 靳千千3, 马秀良1()
1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2河北科技大学 材料科学与工程学院 石家庄 050018
3广西科技大学 电子工程学院 先进物质结构研究中心 柳州 545006
Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy
SHAO Xiaohong1, PENG Zhenzhen2, JIN Qianqian3, MA Xiuliang1()
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
3Center for the Structure of Advanced Matter, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
引用本文:

邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
Xiaohong SHAO, Zhenzhen PENG, Qianqian JIN, Xiuliang MA. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. Acta Metall Sin, 2023, 59(4): 556-566.

全文: PDF(4541 KB)   HTML
摘要: 

以含长周期堆垛有序(LPSO)结构的Mg-Zn-Y(-Zr)合金为研究对象,运用透射电子显微方法,从原子尺度解析LPSO结构/富含溶质元素堆垛层错(SFs)对{101¯2}孪晶交汇行为的作用。结果表明:LPSO/SFs与孪晶交截处易形成基面-棱柱面,从而引起孪晶界在LPSO/SFs间弯曲成弓形,孪晶界存在Zn元素偏聚,Y元素偏聚不明显。LPSO/SFs间同轴{101¯2}孪晶变体交汇,引入基面-基面(BB)界面及柱面-柱面(PP)界面,且在近LPSO/SFs处产生三角形的局部基体结构。LPSO结构形成扭折时,{101¯2}孪晶在扭折界面单侧形核长大,此处扭折界面转为孪晶界面;残余扭折界面与基体侧孪晶扩展界面相交,在LPSO/SFs近邻处形成三角形的基体结构。LPSO/SFs/TSFs (孪晶层错)间不同孪晶变体形核,以及交汇引入的分割带来的Hall-Petch效应,可提升合金的硬化率。通过调控镁合金LPSO结构的间距和厚度引入不同孪晶变体,可为其优化性能提供新思路。

关键词 镁合金LPSO结构孪晶球差校正扫描透射电镜原子尺度    
Abstract

The effect of long-period stacking ordered (LPSO) structure/solute-rich element laminar stacking faults (SFs) on the intersection of co-zone {101¯2} twin variants was uncovered at the atomic scale by TEM. The results show that a basal-prismatic (BP) boundary is generally formed at the intersection of LPSO/SFs and twins, bending the twin boundaries (TBs) into a bow shape between the adjacent LPSO/SFs. The co-zone {101¯2} twin variants and LPSO/SFs intersect with each other, introducing a basal-basal (BB) boundary and prismatic-prismatic (PP) boundaries, associated with a triangular matrix near the LPSO/SFs. More Zn atoms than Y atoms were segregated into the TBs. Also, when the LPSO structure is kinked, the {101¯2} twin generates and grows on one side of the kink boundary, and the local kink boundary transforms into TB. The growing TB intersects with the residual kink boundary, leaving a triangular matrix near the LPSO/SFs. Multiple twin variants nucleate between the LPSO/SFs/TSFs (twinned stacking faults), and the associated Hall-Petch effect is brought by the segmentation introduced by the intersecting of variants, which can improve the Mg alloy hardening rate. Introducing different twin variants by regulating the LPSO structure's spacing and thickness in magnesium alloy may shed new light on optimizing their performance.

Key wordsmagnesium alloy    LPSO structure    twin    Cs-corrected STEM    atomic scale
收稿日期: 2022-10-21     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51871222);国家自然科学基金项目(52171021)
通讯作者: 马秀良,xlma@imr.ac.cn,主要从事材料界面结构与缺陷的电子显微学研究
Corresponding author: MA Xiuliang, professor, Tel: (024)23971845, E-mail: xlma@imr.ac.cn
作者简介: 邵晓宏,女,1981年生,研究员,博士
服务
把本文推荐给朋友 101¯2}孪晶交汇机制的原子尺度研究”的文章,特向您推荐。请打开下面的网址:https://www.ams.org.cn/CN/abstract/abstract32786.shtml" name="neirong"> 101¯2}孪晶交汇机制的原子尺度研究">
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵晓宏
彭珍珍
靳千千
马秀良
图1  hcp结构Mg及镁合金中{101¯2}孪晶变体及长周期有序堆垛(LPSO)结构与孪晶的交互作用示意图
图2  含LPSO结构Mg-Zn-Y镁合金室温压缩前后的微观结构
图3  LPSO/SFs间{101¯2}共轴孪晶交汇形成基面-基面(BB)界面和柱面-柱面(PP)界面
图4  LPSO/TSFs间{101¯2}孪晶内部BB界面和{101¯1}孪晶共存
图5  LPSO与TSFs间Mg片层内{101¯2}孪晶相交形成BB界面
图6  LPSO结构间{101¯2}孪晶形核与相遇
图7  LPSO间{101¯2}孪晶形核、扩展与交汇示意图
图8  LPSO/SFs内扭折界面(KB)与{101¯2}孪晶共存形貌
图9  LPSO结构扭折促进{101¯2}孪晶在扭折带单侧形核
1 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
2 Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans., 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
3 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-ontrast STEM [J]. Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
4 Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure [J]. Mater. Trans., 2007, 48: 2986
doi: 10.2320/matertrans.MER2007142
5 Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys [J]. Acta Mater., 2010, 58: 2936
doi: 10.1016/j.actamat.2010.01.022
6 Abe E, Ono A, Itoi T, et al. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy [J]. Philos. Mag. Lett., 2011, 91: 690
doi: 10.1080/09500839.2011.609149
7 Shao X H, Yang H J, De Hosson J T M, et al. Microstructural characterization of long-period stacking ordered phases in Mg97Zn1Y2 (at. %) alloy [J]. Microsc. Microanal., 2013, 19: 1575
doi: 10.1017/S1431927613012750
8 Zhu Y M, Morton A J, Nie J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys [J]. Acta Mater., 2012, 60: 6562
doi: 10.1016/j.actamat.2012.08.022
9 Jin Q Q, Fang C F, Mi S B. Formation of long-period stacking ordered structures in Mg88 M5Y7 (M = Ti, Ni and Pb) casting alloys [J]. J. Alloys Compd., 2013, 568: 21
doi: 10.1016/j.jallcom.2013.03.061
10 Mi S B, Jin Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys [J]. Scr. Mater., 2013, 68: 635
doi: 10.1016/j.scriptamat.2012.12.025
11 Jin Q Q, Shao X H, Hu X B, et al. New polytypes of long-period stacking ordered structures in a near-equilibrium Mg97Zn1Y2 alloy [J]. Philos. Mag. Lett., 2017, 97: 180
doi: 10.1080/09500839.2017.1311426
12 Jin Q Q, Shao X H, Peng Z Z, et al. Crystallographic account of an ultra-long period stacking ordered phase in an Mg88Co5Y7 alloy [J]. J. Alloys Compd., 2017, 693: 1035
doi: 10.1016/j.jallcom.2016.09.279
13 Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Mater., 2010, 58: 4760
doi: 10.1016/j.actamat.2010.05.012
14 Hagihara K, Li Z X, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J]. Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
15 Shao X H, Peng Z Z, Jin Q Q, et al. Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy [J]. Acta Mater., 2016, 118: 177
doi: 10.1016/j.actamat.2016.07.054
16 Peng Z Z, Shao X H, Jin Q Q, et al. Dislocation configuration and solute redistribution of low angle kink boundaries in an extruded Mg-Zn-Y-Zr alloy [J]. Mater. Sci. Eng., 2017, A687: 211
17 Peng Z Z, Jin Q Q, Shao X H, et al. Effect of temperature on deformation mechanisms of the Mg88Co5Y7 alloy during hot compression [J]. Mater. Charact., 2019, 151: 553
doi: 10.1016/j.matchar.2019.03.049
18 Peng Z Z, Shao X H, Liang Z M, et al. Synergetic deformation mechanisms in an Mg-Zn-Y-Zr alloy with intragranular LPSO structures [J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.09.010
19 Barnett M R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins [J]. Mater. Sci. Eng., 2007, A464: 1
20 Roberts E, Partridge P G. The accommodation around {1012}<1011> twins in magnesium [J]. Acta Metall., 1966, 14: 513
doi: 10.1016/0001-6160(66)90319-1
21 Park S H, Hong S G, Lee C S. Activation mode dependent { 10 1 ¯ 2 }<1011> twinning characteristics in a polycrystalline magnesium alloy [J]. Scr. Mater., 2010, 62: 202
doi: 10.1016/j.scriptamat.2009.10.027
22 El Kadiri H, Kapil J, Oppedal A L, et al. The effect of twin-twin interactions on the nucleation and propagation of { 10 1 ¯ 2 } twinning in magnesium [J]. Acta Mater., 2013, 61: 3549
doi: 10.1016/j.actamat.2013.02.030
23 Yu Q, Wang J, Jiang Y Y, et al. Twin-twin interactions in magnesium [J]. Acta Mater., 2014, 77: 28
doi: 10.1016/j.actamat.2014.05.030
24 Yu Q, Wang J, Jiang Y Y, et al. Co-zone { 10 1 ¯ 2 } twin interaction in magnesium single crystal [J]. Mater. Res. Lett., 2014, 2: 82
doi: 10.1080/21663831.2013.867291
25 Sun Q, Zhang X Y, Ren Y, et al. Observations on the intersection between { 10 1 ¯ 2 } twin variants sharing the same zone axis in deformed magnesium alloy [J]. Mater. Charact., 2015, 109: 160
doi: 10.1016/j.matchar.2015.09.024
26 Shi D F, Liu T M, Hou D W, et al. The effect of twin-twin interaction in Mg-3Al-1Zn alloy during compression [J]. J. Alloys Compd., 2016, 685: 428
doi: 10.1016/j.jallcom.2016.05.338
27 Chen H C, Liu T M, Xiang S H, et al. Abnormal migration of twin boundaries in rolled AZ31 alloy containing intersecting { 10 1 ¯ 2 } extension twins [J]. J. Alloys Compd., 2017, 690: 376
doi: 10.1016/j.jallcom.2016.08.154
28 Mokdad F, Chen D L, Li D Y. Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy [J]. Mater. Des., 2017, 119: 376
doi: 10.1016/j.matdes.2017.01.072
29 Wang J, Yu Q, Jiang Y Y, et al. Twinning-associated boundaries in hexagonal close-packed metals [J]. JOM, 2014, 66: 95
doi: 10.1007/s11837-013-0803-0
30 Morrow B M, Cerreta E K, McCabe R J, et al. Toward understanding twin-twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium [J]. Mater. Sci. Eng., 2014, A613: 365
31 Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
doi: 10.1016/0079-6425(94)00007-7
32 Shao X H, Yang Z Q, Ma X L. Interplay between { 10 1 ¯ 2 } deformation twins and basal stacking faults enriched with Zn/Y in Mg97Zn1Y2 alloy [J]. Philos. Mag. Lett., 2014, 94: 150
doi: 10.1080/09500839.2014.885123
33 Shao X H, Zheng S J, Chen D, et al. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy [J]. Sci. Rep., 2016, 6: 30096
doi: 10.1038/srep30096 pmid: 27435638
34 Shao X H, Peng Z Z, Jin Q Q, et al. Unravelling the local ring-like atomic pattern of { 10 1 ¯ 2 } twin boundary in an Mg-Zn-Y alloy [J]. Philos. Mag., 2019, 99: 306
doi: 10.1080/14786435.2018.1539262
35 Shao X H, Jin Q Q, Zhou Y T, et al. Basal shearing of twinned stacking faults and its effect on mechanical properties in an Mg-Zn-Y alloy with LPSO phase [J]. Mater. Sci. Eng., 2020, A779: 139109
36 Liu B Y, Wang J, Li B, et al. Twinning-like lattice reorientation without a crystallographic twinning plane [J]. Nat. Commun., 2014, 5: 3297
doi: 10.1038/ncomms4297
37 Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
doi: 10.1126/science.1229369 pmid: 23704567
38 Shao J B, Chen Z Y, Chen T, et al. The interaction between ( 10 1 ¯ 2 ) twinning and long-period stacking ordered (LPSO) phase during hot rolling and annealing process of a Mg-Gd-Y-Zn-Zr alloy [J]. Metall. Mater. Trans., 2021, 52A: 520
39 Chen T, Chen Z Y, Shao J B, et al. Interactions between kinking and { 10 1 ¯ 2 } twinning in a Mg-Zn-Gd alloy containing long period stacking ordered (LPSO) phase [J]. Mater. Sci. Eng., 2019, A767: 138418
40 Tane M, Nagai Y, Kimizuka H, et al. Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure [J]. Acta Mater., 2013, 61: 6338
doi: 10.1016/j.actamat.2013.06.041
41 Kim K H, Jeon J B, Kim N J, et al. Role of yttrium in activation of <c + a> slip in magnesium: An atomistic approach [J]. Scr. Mater., 2015, 108: 104
doi: 10.1016/j.scriptamat.2015.06.028
42 Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging [J]. Acta Metall. Sin., 2020, 56: 723
doi: 10.11900/0412.1961.2019.00292
42 张 阳, 邵建波, 陈 韬 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 [J]. 金属学报, 2020, 56: 723
43 Wang L, Sabisch J, Lilleodden E T. Kink formation and concomitant twin nucleation in Mg-Y [J]. Scr. Mater., 2016, 111: 68
doi: 10.1016/j.scriptamat.2015.08.016
44 Zhang F, Ren Y, Yang Z Q, et al. The interaction of deformation twins with long-period stacking ordered precipitates in a magnesium alloy subjected to shock loading [J]. Acta Mater., 2020, 188: 203
doi: 10.1016/j.actamat.2020.01.064
45 Wang J, Beyerlein I J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals [J]. Model. Simul. Mater. Sci. Eng., 2012, 20: 024002
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[10] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[11] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[12] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[13] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[14] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[15] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.