|
|
镁合金LPSO/SFs结构间{}孪晶交汇机制的原子尺度研究 |
邵晓宏1, 彭珍珍2, 靳千千3, 马秀良1( ) |
1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2河北科技大学 材料科学与工程学院 石家庄 050018 3广西科技大学 电子工程学院 先进物质结构研究中心 柳州 545006 |
|
Unravelling the {} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy |
SHAO Xiaohong1, PENG Zhenzhen2, JIN Qianqian3, MA Xiuliang1( ) |
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China 3Center for the Structure of Advanced Matter, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China |
引用本文:
邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
Xiaohong SHAO,
Zhenzhen PENG,
Qianqian JIN,
Xiuliang MA.
Unravelling the {} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. Acta Metall Sin, 2023, 59(4): 556-566.
1 |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
2 |
Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans., 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
|
3 |
Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-ontrast STEM [J]. Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
|
4 |
Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure [J]. Mater. Trans., 2007, 48: 2986
doi: 10.2320/matertrans.MER2007142
|
5 |
Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys [J]. Acta Mater., 2010, 58: 2936
doi: 10.1016/j.actamat.2010.01.022
|
6 |
Abe E, Ono A, Itoi T, et al. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy [J]. Philos. Mag. Lett., 2011, 91: 690
doi: 10.1080/09500839.2011.609149
|
7 |
Shao X H, Yang H J, De Hosson J T M, et al. Microstructural characterization of long-period stacking ordered phases in Mg97Zn1Y2 (at. %) alloy [J]. Microsc. Microanal., 2013, 19: 1575
doi: 10.1017/S1431927613012750
|
8 |
Zhu Y M, Morton A J, Nie J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys [J]. Acta Mater., 2012, 60: 6562
doi: 10.1016/j.actamat.2012.08.022
|
9 |
Jin Q Q, Fang C F, Mi S B. Formation of long-period stacking ordered structures in Mg88 M5Y7 (M = Ti, Ni and Pb) casting alloys [J]. J. Alloys Compd., 2013, 568: 21
doi: 10.1016/j.jallcom.2013.03.061
|
10 |
Mi S B, Jin Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys [J]. Scr. Mater., 2013, 68: 635
doi: 10.1016/j.scriptamat.2012.12.025
|
11 |
Jin Q Q, Shao X H, Hu X B, et al. New polytypes of long-period stacking ordered structures in a near-equilibrium Mg97Zn1Y2 alloy [J]. Philos. Mag. Lett., 2017, 97: 180
doi: 10.1080/09500839.2017.1311426
|
12 |
Jin Q Q, Shao X H, Peng Z Z, et al. Crystallographic account of an ultra-long period stacking ordered phase in an Mg88Co5Y7 alloy [J]. J. Alloys Compd., 2017, 693: 1035
doi: 10.1016/j.jallcom.2016.09.279
|
13 |
Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Mater., 2010, 58: 4760
doi: 10.1016/j.actamat.2010.05.012
|
14 |
Hagihara K, Li Z X, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J]. Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
|
15 |
Shao X H, Peng Z Z, Jin Q Q, et al. Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy [J]. Acta Mater., 2016, 118: 177
doi: 10.1016/j.actamat.2016.07.054
|
16 |
Peng Z Z, Shao X H, Jin Q Q, et al. Dislocation configuration and solute redistribution of low angle kink boundaries in an extruded Mg-Zn-Y-Zr alloy [J]. Mater. Sci. Eng., 2017, A687: 211
|
17 |
Peng Z Z, Jin Q Q, Shao X H, et al. Effect of temperature on deformation mechanisms of the Mg88Co5Y7 alloy during hot compression [J]. Mater. Charact., 2019, 151: 553
doi: 10.1016/j.matchar.2019.03.049
|
18 |
Peng Z Z, Shao X H, Liang Z M, et al. Synergetic deformation mechanisms in an Mg-Zn-Y-Zr alloy with intragranular LPSO structures [J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.09.010
|
19 |
Barnett M R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins [J]. Mater. Sci. Eng., 2007, A464: 1
|
20 |
Roberts E, Partridge P G. The accommodation around {1012}<1011> twins in magnesium [J]. Acta Metall., 1966, 14: 513
doi: 10.1016/0001-6160(66)90319-1
|
21 |
Park S H, Hong S G, Lee C S. Activation mode dependent { 10 1 ¯ 2 }<1011> twinning characteristics in a polycrystalline magnesium alloy [J]. Scr. Mater., 2010, 62: 202
doi: 10.1016/j.scriptamat.2009.10.027
|
22 |
El Kadiri H, Kapil J, Oppedal A L, et al. The effect of twin-twin interactions on the nucleation and propagation of { 10 1 ¯ 2 } twinning in magnesium [J]. Acta Mater., 2013, 61: 3549
doi: 10.1016/j.actamat.2013.02.030
|
23 |
Yu Q, Wang J, Jiang Y Y, et al. Twin-twin interactions in magnesium [J]. Acta Mater., 2014, 77: 28
doi: 10.1016/j.actamat.2014.05.030
|
24 |
Yu Q, Wang J, Jiang Y Y, et al. Co-zone { 10 1 ¯ 2 } twin interaction in magnesium single crystal [J]. Mater. Res. Lett., 2014, 2: 82
doi: 10.1080/21663831.2013.867291
|
25 |
Sun Q, Zhang X Y, Ren Y, et al. Observations on the intersection between { 10 1 ¯ 2 } twin variants sharing the same zone axis in deformed magnesium alloy [J]. Mater. Charact., 2015, 109: 160
doi: 10.1016/j.matchar.2015.09.024
|
26 |
Shi D F, Liu T M, Hou D W, et al. The effect of twin-twin interaction in Mg-3Al-1Zn alloy during compression [J]. J. Alloys Compd., 2016, 685: 428
doi: 10.1016/j.jallcom.2016.05.338
|
27 |
Chen H C, Liu T M, Xiang S H, et al. Abnormal migration of twin boundaries in rolled AZ31 alloy containing intersecting { 10 1 ¯ 2 } extension twins [J]. J. Alloys Compd., 2017, 690: 376
doi: 10.1016/j.jallcom.2016.08.154
|
28 |
Mokdad F, Chen D L, Li D Y. Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy [J]. Mater. Des., 2017, 119: 376
doi: 10.1016/j.matdes.2017.01.072
|
29 |
Wang J, Yu Q, Jiang Y Y, et al. Twinning-associated boundaries in hexagonal close-packed metals [J]. JOM, 2014, 66: 95
doi: 10.1007/s11837-013-0803-0
|
30 |
Morrow B M, Cerreta E K, McCabe R J, et al. Toward understanding twin-twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium [J]. Mater. Sci. Eng., 2014, A613: 365
|
31 |
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
doi: 10.1016/0079-6425(94)00007-7
|
32 |
Shao X H, Yang Z Q, Ma X L. Interplay between { 10 1 ¯ 2 } deformation twins and basal stacking faults enriched with Zn/Y in Mg97Zn1Y2 alloy [J]. Philos. Mag. Lett., 2014, 94: 150
doi: 10.1080/09500839.2014.885123
|
33 |
Shao X H, Zheng S J, Chen D, et al. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy [J]. Sci. Rep., 2016, 6: 30096
doi: 10.1038/srep30096
pmid: 27435638
|
34 |
Shao X H, Peng Z Z, Jin Q Q, et al. Unravelling the local ring-like atomic pattern of { 10 1 ¯ 2 } twin boundary in an Mg-Zn-Y alloy [J]. Philos. Mag., 2019, 99: 306
doi: 10.1080/14786435.2018.1539262
|
35 |
Shao X H, Jin Q Q, Zhou Y T, et al. Basal shearing of twinned stacking faults and its effect on mechanical properties in an Mg-Zn-Y alloy with LPSO phase [J]. Mater. Sci. Eng., 2020, A779: 139109
|
36 |
Liu B Y, Wang J, Li B, et al. Twinning-like lattice reorientation without a crystallographic twinning plane [J]. Nat. Commun., 2014, 5: 3297
doi: 10.1038/ncomms4297
|
37 |
Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
doi: 10.1126/science.1229369
pmid: 23704567
|
38 |
Shao J B, Chen Z Y, Chen T, et al. The interaction between ( 10 1 ¯ 2 ) twinning and long-period stacking ordered (LPSO) phase during hot rolling and annealing process of a Mg-Gd-Y-Zn-Zr alloy [J]. Metall. Mater. Trans., 2021, 52A: 520
|
39 |
Chen T, Chen Z Y, Shao J B, et al. Interactions between kinking and { 10 1 ¯ 2 } twinning in a Mg-Zn-Gd alloy containing long period stacking ordered (LPSO) phase [J]. Mater. Sci. Eng., 2019, A767: 138418
|
40 |
Tane M, Nagai Y, Kimizuka H, et al. Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure [J]. Acta Mater., 2013, 61: 6338
doi: 10.1016/j.actamat.2013.06.041
|
41 |
Kim K H, Jeon J B, Kim N J, et al. Role of yttrium in activation of <c + a> slip in magnesium: An atomistic approach [J]. Scr. Mater., 2015, 108: 104
doi: 10.1016/j.scriptamat.2015.06.028
|
42 |
Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging [J]. Acta Metall. Sin., 2020, 56: 723
doi: 10.11900/0412.1961.2019.00292
|
42 |
张 阳, 邵建波, 陈 韬 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 [J]. 金属学报, 2020, 56: 723
|
43 |
Wang L, Sabisch J, Lilleodden E T. Kink formation and concomitant twin nucleation in Mg-Y [J]. Scr. Mater., 2016, 111: 68
doi: 10.1016/j.scriptamat.2015.08.016
|
44 |
Zhang F, Ren Y, Yang Z Q, et al. The interaction of deformation twins with long-period stacking ordered precipitates in a magnesium alloy subjected to shock loading [J]. Acta Mater., 2020, 188: 203
doi: 10.1016/j.actamat.2020.01.064
|
45 |
Wang J, Beyerlein I J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals [J]. Model. Simul. Mater. Sci. Eng., 2012, 20: 024002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|