|
|
含Cu马氏体时效不锈钢的组织与强韧性 |
王滨1, 牛梦超2, 王威3( ), 姜涛4( ), 栾军华5, 杨柯3 |
1郑州大学 河南先进技术研究院 郑州 450003 2香港理工大学 机械工程学系 香港 999077 3中国科学院金属研究所 沈阳 110016 4中国航发北京航空材料研究院 北京 100095 5香港城市大学 材料科学与工程学系 香港 999077 |
|
Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel |
WANG Bin1, NIU Mengchao2, WANG Wei3( ), JIANG Tao4( ), LUAN Junhua5, YANG Ke3 |
1Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China 2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China 3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 5Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China |
引用本文:
王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. 含Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
Bin WANG,
Mengchao NIU,
Wei WANG,
Tao JIANG,
Junhua LUAN,
Ke YANG.
Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. Acta Metall Sin, 2023, 59(5): 636-646.
1 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
2 |
Hättestrand M, Nilsson J O, Stiller K, et al. Precipitation hardening in 12%Cr-9%Ni-4%Mo-2%Cu stainless steel[J]. Acta Mater., 2004, 52: 1023
doi: 10.1016/j.actamat.2003.10.048
|
3 |
Yang K, Niu M C, Tian J L, et al. Research and development of maraging stainless steel used for new generation landing gear[J]. Acta Metall. Sin., 2018, 54: 1567
doi: 10.11900/0412.1961.2018.00356
|
3 |
杨 柯, 牛梦超, 田家龙 等. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54: 1567
|
4 |
Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metall. Sin., 2020, 56: 494
|
4 |
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56: 494
|
5 |
Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metall. Sin., 2020, 56: 549
|
5 |
刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
|
6 |
Dong H. Year 2020: 200th anniversary for alloy steel—Preword of special issue for alloy steel[J]. Acta Metall. Sin., 2020, 56: I
|
6 |
董 瀚. 2020年: 合金钢200周年——“合金钢专刊”前言[J]. 金属学报, 2020, 56: I
|
7 |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
|
8 |
Tian Y Q, Zhang H J, Chen L S, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metall. Sin., 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
|
8 |
田亚强, 张宏军, 陈连生 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
|
9 |
Kong H J, Yang T, Chen R, et al. Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions[J]. Scr. Mater., 2020, 186: 213
doi: 10.1016/j.scriptamat.2020.05.008
|
10 |
Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J]. Acta Mater., 2018, 146: 126
doi: 10.1016/j.actamat.2017.12.035
|
11 |
Cao H W, Luo X H, Zhan G F, et al. Effect of intercritical quenching on the microstructure and cryogenic mechanical properties of a 7 pct Ni steel[J]. Metall. Mater. Trans., 2017, 48A: 4403
|
12 |
Zhang H L, Sun M Y, Liu Y X, et al. Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness[J]. Acta Mater., 2021, 211: 116878
doi: 10.1016/j.actamat.2021.116878
|
13 |
He Y, Yang K, Sha W. Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel[J]. Metall. Mater. Trans., 2005, 36A: 2273
|
14 |
Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility[J]. Scr. Mater., 2009, 60: 1141
doi: 10.1016/j.scriptamat.2009.02.062
|
15 |
Niu M C, Yang K, Luan J H, et al. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels[J]. J. Mater. Sci. Technol., 2022, 104: 52
doi: 10.1016/j.jmst.2021.06.055
|
16 |
Seko A, Nishitani S R, Tanaka I, et al. First-principles calculation on free energy of precipitate nucleation[J]. Calphad, 2004, 28: 173
doi: 10.1016/j.calphad.2004.07.003
|
17 |
Liang J X, Liu Z B, Yang Z Y. Development and application of high strength stainless steel[J]. Aerosp. Mater. Technol., 2013, 43: 1
|
17 |
梁剑雄, 刘振宝, 杨志勇. 高强不锈钢的发展与应用技术[J]. 宇航材料工艺, 2013, 43: 1
|
18 |
Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy[J]. Adv. Mater. Process., 2008, 166: 37
|
19 |
Xiang S, Wang J P, Sun Y L, et al. Effect of ageing process on mechanical properties of martensite precipitation-hardening stainless steel[J]. Adv. Mater. Res., 2011, 146-147: 382
|
20 |
Couturier L, De Geuser F, Descoins M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Mater. Des., 2016, 107: 416
doi: 10.1016/j.matdes.2016.06.068
|
21 |
Habibi-Bajguirani H R, Jenkins M L. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5[J]. Philos. Mag. Lett., 1996, 73: 155
doi: 10.1080/095008396180786
|
22 |
Salje G, Feller-Kniepmeier M. The diffusion and solubility of copper in iron[J]. J. Appl. Phys., 48: 1833
|
23 |
Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron[J]. Acta Mater., 2002, 50: 4117
doi: 10.1016/S1359-6454(02)00229-X
|
24 |
Cracknell A, Petch N J. Frictional forces on dislocation arrays at the lower yield point in iron[J]. Acta Metall., 1955, 3: 186
doi: 10.1016/0001-6160(55)90090-0
|
25 |
Han G, Xie Z J, Li Z Y, et al. Evolution of crystal structure of Cu precipitates in a low carbon steel[J]. Mater. Des., 2017, 135: 92
doi: 10.1016/j.matdes.2017.08.054
|
26 |
Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel[J]. Acta Mater., 2019, 179: 296
doi: 10.1016/j.actamat.2019.08.042
|
27 |
Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
|
28 |
Fahr D. Stress- and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels[J]. Metall. Mater. Trans., 1971, 2B: 1883
|
29 |
Jimenez-Melero E, Van Dijk N H, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels[J]. Acta Mater., 2007, 55: 6713
doi: 10.1016/j.actamat.2007.08.040
|
30 |
Lacroix G, Pardoen T, Jacques P J. The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
doi: 10.1016/j.actamat.2008.04.035
|
31 |
Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
|
32 |
Shu D L. Mechanical Properties of Engineering Materials[M]. 3rd Ed., Beijing: China Machine Press, 2016: 73
|
32 |
束德林. 工程材料力学性能[M]. 第3版, 北京: 机械工业出版社, 2016: 73
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|