Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 636-646    DOI: 10.11900/0412.1961.2021.00599
  本期目录 | 过刊浏览 |
Cu马氏体时效不锈钢的组织与强韧性
王滨1, 牛梦超2, 王威3(), 姜涛4(), 栾军华5, 杨柯3
1郑州大学 河南先进技术研究院 郑州 450003
2香港理工大学 机械工程学系 香港 999077
3中国科学院金属研究所 沈阳 110016
4中国航发北京航空材料研究院 北京 100095
5香港城市大学 材料科学与工程学系 香港 999077
Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel
WANG Bin1, NIU Mengchao2, WANG Wei3(), JIANG Tao4(), LUAN Junhua5, YANG Ke3
1Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
5Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
引用本文:

王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. 含Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
Bin WANG, Mengchao NIU, Wei WANG, Tao JIANG, Junhua LUAN, Ke YANG. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. Acta Metall Sin, 2023, 59(5): 636-646.

全文: PDF(5128 KB)   HTML
摘要: 

通过XRD、SEM、EBSD、TEM和APT等手段系统研究了一种含Cu的Fe-Cr-Co-Ni-Mo系马氏体时效不锈钢在时效过程中析出相和逆转变奥氏体的演变规律及其对力学性能的影响。结果表明,时效过程中在基体中依次析出富Cu相和富Mo相,部分富Mo相依附于富Cu相形核长大。此外,随着时效时间的延长,逆转变奥氏体的含量增加,且逆转变奥氏体中的Cu和Ni含量逐渐升高,奥氏体机械稳定性增强,韧化作用提高。试样时效90 h后,材料的屈服强度和抗拉强度分别达到1270和1495 MPa,冲击功为81 J,断裂韧性为 102 MPa·m1/2,与商用马氏体时效不锈钢相比,表现出更为优异的强韧性匹配。

关键词 马氏体时效不锈钢逆转变奥氏体TRIP效应强韧性    
Abstract

An increase in strength often leads to a decrease in the ductility and toughness of maraging stainless steels; this phenomenon is known as the strength-ductility/toughness trade-off dilemma in structural materials. Some studies have found that the introduction of submicro/nanometer-sized retained or reverted austenite could mitigate the strength-ductility/toughness trade-off of high-strength maraging stainless steels. In this work, a novel strategy to accelerate austenite reversion by Cu addition in a Fe-Ni-Mo-Co-Cr maraging stainless steel was studied. In addition, the aging behavior and its effects on the mechanical properties of a Cu-containing Fe-Cr-Co-Ni-Mo maraging stainless steel were systematically studied. Transmission electron microscope characterizations showed that Cu- and Mo-rich phases precipitated from the steel matrix in sequence during the aging process; more specifically, a part of Mo-rich phase nucleated at the Cu-rich phase and then grew. Moreover, along with the segregation of Cu and Ni, reverted austenite was formed gradually. With an increase in the aging time, the stability of the reverted austenite increased, resulting in a substantial increase in its toughness. After aging for 90 h, the yield and tensile strengths of the steel reached 1270 and 1495 MPa, respectively, and the impact energy and fracture toughness were 81 J and 102 MPa·m1/2, respectively, showing an excellent match of strength and toughness compared with commercial maraging stainless steels.

Key wordsmaraging stainless steel    reverted austenite    TRIP effect    strength and toughness
收稿日期: 2021-12-31     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51201160);中国科学院青年创新促进会项目(2017233)
作者简介: 王 滨,男,1995年生,硕士生
图1  含Cu马氏体时效不锈钢试样在480℃不同时效时间下的力学性能及商用马氏体时效不锈钢强度-冲击韧性对比图
图2  含Cu马氏体时效不锈钢试样淬火态的SEM像和480℃时效0.5 h的OM像
图3  含Cu马氏体时效不锈钢试样在480℃时效不同时间后析出相的TEM明场像
图4  含Cu马氏体时效不锈钢试样在480℃时效0.5 h后元素的APT分析
图5  含Cu马氏体时效不锈钢试样在480℃时效60 h后析出相的高角环形暗场(HAADF)像和EDS元素面扫描图
图6  含Cu马氏体时效不锈钢试样在480℃时效90 h后微观组织的HAADF像和EDS元素面扫描图及对应线扫描图
图7  含Cu马氏体时效不锈钢试样在480℃时效不同时间后的XRD谱及奥氏体体积分数
图8  含Cu马氏体时效不锈钢试样在480℃时效不同时间后的逆转变奥氏体的TEM明场相
图9  含Cu马氏体时效不锈钢试样在480℃时效90 h后的HAADF像和EDS元素面扫描图
Time / hCuNi
01.02 ± 0.028.23 ± 0.16
241.07 ± 0.0110.36 ± 0.32
601.10 ± 0.0516.15 ± 0.37
901.15 ± 0.0217.89 ± 0.32
表1  逆转变奥氏体中Cu和Ni元素在不同时效时间下的质量分数 (mass fraction / %)
图10  含Cu马氏体时效不锈钢试样在时效60和90 h后冲击断口附近及未变形基体的SEM像和EBSD像
图11  含Cu马氏体时效不锈钢试样中析出相协同析出示意图
1 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
2 Hättestrand M, Nilsson J O, Stiller K, et al. Precipitation hardening in 12%Cr-9%Ni-4%Mo-2%Cu stainless steel[J]. Acta Mater., 2004, 52: 1023
doi: 10.1016/j.actamat.2003.10.048
3 Yang K, Niu M C, Tian J L, et al. Research and development of maraging stainless steel used for new generation landing gear[J]. Acta Metall. Sin., 2018, 54: 1567
doi: 10.11900/0412.1961.2018.00356
3 杨 柯, 牛梦超, 田家龙 等. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54: 1567
4 Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metall. Sin., 2020, 56: 494
4 罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56: 494
5 Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metall. Sin., 2020, 56: 549
5 刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
6 Dong H. Year 2020: 200th anniversary for alloy steel—Preword of special issue for alloy steel[J]. Acta Metall. Sin., 2020, 56: I
6 董 瀚. 2020年: 合金钢200周年——“合金钢专刊”前言[J]. 金属学报, 2020, 56: I
7 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
8 Tian Y Q, Zhang H J, Chen L S, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metall. Sin., 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
8 田亚强, 张宏军, 陈连生 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
9 Kong H J, Yang T, Chen R, et al. Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions[J]. Scr. Mater., 2020, 186: 213
doi: 10.1016/j.scriptamat.2020.05.008
10 Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J]. Acta Mater., 2018, 146: 126
doi: 10.1016/j.actamat.2017.12.035
11 Cao H W, Luo X H, Zhan G F, et al. Effect of intercritical quenching on the microstructure and cryogenic mechanical properties of a 7 pct Ni steel[J]. Metall. Mater. Trans., 2017, 48A: 4403
12 Zhang H L, Sun M Y, Liu Y X, et al. Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness[J]. Acta Mater., 2021, 211: 116878
doi: 10.1016/j.actamat.2021.116878
13 He Y, Yang K, Sha W. Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel[J]. Metall. Mater. Trans., 2005, 36A: 2273
14 Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility[J]. Scr. Mater., 2009, 60: 1141
doi: 10.1016/j.scriptamat.2009.02.062
15 Niu M C, Yang K, Luan J H, et al. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels[J]. J. Mater. Sci. Technol., 2022, 104: 52
doi: 10.1016/j.jmst.2021.06.055
16 Seko A, Nishitani S R, Tanaka I, et al. First-principles calculation on free energy of precipitate nucleation[J]. Calphad, 2004, 28: 173
doi: 10.1016/j.calphad.2004.07.003
17 Liang J X, Liu Z B, Yang Z Y. Development and application of high strength stainless steel[J]. Aerosp. Mater. Technol., 2013, 43: 1
17 梁剑雄, 刘振宝, 杨志勇. 高强不锈钢的发展与应用技术[J]. 宇航材料工艺, 2013, 43: 1
18 Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy[J]. Adv. Mater. Process., 2008, 166: 37
19 Xiang S, Wang J P, Sun Y L, et al. Effect of ageing process on mechanical properties of martensite precipitation-hardening stainless steel[J]. Adv. Mater. Res., 2011, 146-147: 382
20 Couturier L, De Geuser F, Descoins M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Mater. Des., 2016, 107: 416
doi: 10.1016/j.matdes.2016.06.068
21 Habibi-Bajguirani H R, Jenkins M L. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5[J]. Philos. Mag. Lett., 1996, 73: 155
doi: 10.1080/095008396180786
22 Salje G, Feller-Kniepmeier M. The diffusion and solubility of copper in iron[J]. J. Appl. Phys., 48: 1833
23 Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron[J]. Acta Mater., 2002, 50: 4117
doi: 10.1016/S1359-6454(02)00229-X
24 Cracknell A, Petch N J. Frictional forces on dislocation arrays at the lower yield point in iron[J]. Acta Metall., 1955, 3: 186
doi: 10.1016/0001-6160(55)90090-0
25 Han G, Xie Z J, Li Z Y, et al. Evolution of crystal structure of Cu precipitates in a low carbon steel[J]. Mater. Des., 2017, 135: 92
doi: 10.1016/j.matdes.2017.08.054
26 Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel[J]. Acta Mater., 2019, 179: 296
doi: 10.1016/j.actamat.2019.08.042
27 Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
28 Fahr D. Stress- and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels[J]. Metall. Mater. Trans., 1971, 2B: 1883
29 Jimenez-Melero E, Van Dijk N H, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels[J]. Acta Mater., 2007, 55: 6713
doi: 10.1016/j.actamat.2007.08.040
30 Lacroix G, Pardoen T, Jacques P J. The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
doi: 10.1016/j.actamat.2008.04.035
31 Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
32 Shu D L. Mechanical Properties of Engineering Materials[M]. 3rd Ed., Beijing: China Machine Press, 2016: 73
32 束德林. 工程材料力学性能[M]. 第3版, 北京: 机械工业出版社, 2016: 73
[1] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[2] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[3] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[4] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[5] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[6] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[7] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[8] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
[9] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[10] 田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
[11] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[12] 安同邦,田志凌,单际国,魏金山. 保护气对1000 MPa级熔敷金属组织及力学性能的影响*[J]. 金属学报, 2015, 51(12): 1489-1499.
[13] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[14] 刘东升 程丙贵 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性[J]. 金属学报, 2012, 48(3): 334-342.
[15] 冯春 方鸿生 白秉哲 郑燕康. 0.02%Nb空冷仿晶界型铁素体/粒状贝氏体复相钢的相变及强韧性[J]. 金属学报, 2010, 46(4): 473-478.