Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1590-1602    DOI: 10.11900/0412.1961.2021.00534
  本期目录 | 过刊浏览 |
新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能
芮祥1,2, 李艳芬1,2,3(), 张家榕2,3, 王旗涛1,2, 严伟1,2,3, 单以银1,2,3
1中国科学技术大学 材料科学与工程学院 沈阳 110016
2中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates
RUI Xiang1,2, LI Yanfen1,2,3(), ZHANG Jiarong2,3, WANG Qitao1,2, YAN Wei1,2,3, SHAN Yiyin1,2,3
1School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
Xiang RUI, Yanfen LI, Jiarong ZHANG, Qitao WANG, Wei YAN, Yiyin SHAN. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. Acta Metall Sin, 2023, 59(12): 1590-1602.

全文: PDF(4765 KB)   HTML
摘要: 

设计了一种新型纳米氮化物(MX相)与氧化物协同强化的9Cr-ODS钢,并对粉末冶金制备材料在不同热处理后的力学性能与显微组织进行了测试表征。采用粉体热锻造固化成型替代热等静压工艺,制备的新型ODS钢获得了98%的良好致密度。材料正火及回火后的组织为回火马氏体,不存在明显的择优取向及粗、细混晶组织,平均晶粒尺寸约1 μm。在晶界未观察到明显的M23C6型碳化物,但在基体内获得了大量尺寸在30~200 nm范围的MX析出相。同时,纳米氧化物析出相弥散分布,平均粒径约3.0 nm、数密度约1.9 × 1023 m-3。力学性能测试表明:材料的显微硬度随正火温度从980℃升高至1200℃而逐渐降低,而随回火温度从700℃升高至800℃呈现先增加后降低的趋势;材料经1100℃、1 h正火及750℃、1 h回火后获得了最佳的强塑性,室温屈服强度、抗拉强度以及延伸率分别为1039 MPa、1103 MPa及20.5%,700℃下分别为291 MPa、333 MPa及16%。

关键词 ODS钢MX析出相纳米氧化物显微组织力学性能    
Abstract

Oxide dispersion-strengthened (ODS) steels with nano-scale Y2O3 or Y-Ti-O oxides have been considered as potential structural materials used in advanced nuclear systems. In this work, a novel 9Cr-ODS steel, namely, MX-ODS steel, was designed by decreasing carbon content to eliminate conventional M23C6-type carbides and by increasing the content of nitrogen and vanadium to form MX-type precipitates. In addition, the MX-ODS steel was synergistically strengthened by nano-scale MX precipitates and oxides. After fabrication by powder metallurgy, microstructural observation, and mechanical property tests were conducted after different heat treatments. The density of the prepared materials using hot forging instead of hot isostatic pressing was about 98%. Results of the microstructure observation of the MX-ODS steel indicated that after normalizing and tempering, the tempered martensitic structure dominated, and the mean effective grain size was approximately 1 μm. Moreover, the preferential orientation of coarse-grained and fine-grained mixed grains was not detected. By diminishing carbon content, M23C6-type carbides precipitated at the grain and sub-grain boundaries were eliminated. By contrast, MX-type precipitates with a diameter of approximately 30-200 nm were formed in the matrix. Furthermore, nano-scale Y-rich oxides with an average size of approximately 3.0 nm were dispersed in the matrix, and a number density can reach to approximately 1.9 × 1023 m-3. Furthermore, “core-shell” structure precipitates were found, which were spherical in shape with a diameter ranging from 10 to 20 nm. Such precipitates also contained Y, Ta, and O as the core and V as the shell. The mechanical properties indicate that microhardness decreased from 372 to 320 HV with the increase of normalizing temperature from 980oC to 1200oC. In addition, microhardness decreased significantly after tempering but initially increased and then decreased with the increase of tempering temperature from 700oC to 800oC, with a peak microhardness at approximately 750oC. Excellent strength and ductility were obtained after normalizing at 1100oC for 1 h and then tempering at 750oC for 1 h. Yield strength, ultimate tensile strength, and total elongation were 1039 MPa, 1103 MPa, and 20.5% when tested at room temperature and 291 MPa, 333 MPa, and 16% at 700oC, respectively.

Key wordsODS steel    MX precipitates    nano-oxide    microstructure    mechanical property
收稿日期: 2021-12-06     
ZTFLH:  TL341  
基金资助:国家自然科学基金项目(51971217);中国科学院金属研究所海外引进“优秀学者”人才项目(JY7A7A111A1)
通讯作者: 李艳芬,yfli@imr.ac.cn,主要从事先进能源用钢铁材料研究
作者简介: 芮 祥,1996年生,男,硕士生
图1  设计材料中C含量与M23C6、MX析出相数量的关系
图2  基于材料实测化学成分(Fe-8.82Cr-0.99W-0.96Mn-0.39V-0.097Ta-0.12N)的Jmat Pro热力学计算
图3  新型MX-ODS钢的EBSD图及晶粒取向和尺寸统计结果
图4  新型MX-ODS钢在不同状态下的析出相形貌SEM像及对应的EDS成分分析
图5  新型MX-ODS钢的显微组织及纳米析出相尺寸统计图
图6  新型MX-ODS钢中析出相扫描透射电镜高角环形暗场(STEM-HAADF)像及EDS面扫描图
图7  新型MX-ODS钢中纳米析出相的STEM像及EDS面扫描图
图8  不同热处理的新型MX-ODS钢的显微硬度
图9  新型MX-ODS钢在不同热处理后的拉伸应力-应变曲线
Phaseλ / nmr / nmσp / MPa
MX precipitate40075226
Nano-oxide40.311.5612
表1  MX相与纳米氧化物对屈服强度的贡献
1 Ukai S, Ohtsuka S, Kaito T, et al. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors[A]. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Elsevier, 2017: 357
2 Li Y F, Nagasaka T, Muroga T, et al. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs[J]. Fusion Eng. Des., 2011, 86: 2495
doi: 10.1016/j.fusengdes.2011.03.004
3 Muroga T, Nagasaka T, Li Y, et al. Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels[J]. Fusion Eng. Des., 2014, 89: 1717
doi: 10.1016/j.fusengdes.2014.01.010
4 Bao F Y, Li Y F, Wang G Q, et al. Corrosion behaviors and mechanisms of ODS steel exposed to static Pb-Bi eutectic at 600 and 700oC[J]. Acta Metall. Sin., 2020, 56: 1366
4 包飞洋, 李艳芬, 王光全 等. ODS钢在600和700℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56: 1366
doi: 10.11900/0412.1961.2020.00035
5 Xie R, Lv Z, Wang Q, et al. Structure property of 9Cr-ODS steel prepared by hot isostatic pressing equipment[J]. New Technol. New Process, 2019, (3): 7
5 谢 锐, 吕 铮, 王 晴 等. 热等静压制备9Cr氧化物弥散强化钢的组织性能[J]. 新技术新工艺, 2019, (3): 7
6 Feng D Z. Effect of Ti and Zr on microstructure and properties of nano-structured 9Cr-ODS steels[D]. Shenyang: Northeastern University, 2015
6 冯丹竹. Ti和Zr的添加对9Cr-ODS钢微观结构和力学性能的影响[D]. 沈阳: 东北大学, 2015
7 Ramar A, Spätig P, Schäublin R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy[J]. J. Nucl. Mater., 2008, 382: 210
doi: 10.1016/j.jnucmat.2008.08.009
8 Chauhan A, Litvinov D, De Carlan Y, et al. Study of the deformation and damage mechanisms of a 9Cr-ODS steel: Microstructure evolution and fracture characteristics[J]. Mater. Sci. Eng., 2016, A658: 123
9 Peng Y Y, YU L M, Liu Y C, et al. Effect of ageing treatment at 650oC on microstructure and properties of 9Cr-ODS steel[J]. Acta Metall. Sin., 2020, 56: 1075
9 彭艳艳, 余黎明, 刘永长 等. 650℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56: 1075
doi: 10.11900/0412.1961.2019.00445
10 Xu S, Zhou Z J, Jia H D. Research progress and prospect of strength-ductility trade-off about irradiation resistant ODS F/M steel[J]. At. Energy Sci. Technol., 2019, 53: 1885
10 徐 帅, 周张健, 贾皓东. 先进反应堆用ODS F/M钢的强韧性匹配研究进展[J]. 原子能科学技术, 2019, 53: 1885
11 Kim J H, Byun T S, Hoelzer D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I: Mechanical and microstructural observations[J]. Mater. Sci. Eng., 2013, A559: 101
12 Kim I S, Okuda T, Kang C Y, et al. Effect of oxide species and thermomechanical treatments on the strength properties of mechanically alloyed Fe-17%Cr ferritic ODS materials[J]. Met. Mater. Int., 2000, 6: 513
13 Li Z Y, Lu Z, Xie R, et al. Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering[J]. Fusion Eng. Des., 2017, 121: 159
doi: 10.1016/j.fusengdes.2017.06.039
14 Cayron C, Rath E, Chu I, et al. Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing[J]. J. Nucl. Mater., 2004, 335: 83
doi: 10.1016/j.jnucmat.2004.06.010
15 Oksiuta Z, Baluc N. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application[J]. Nucl. Fusion, 2009, 49: 055003
16 Takaya S, Furukawa T, Müller G, et al. Al-containing ODS steels with improved corrosion resistance to liquid lead-bismuth[J]. J. Nucl. Mater., 2012, 428: 125
doi: 10.1016/j.jnucmat.2011.06.046
17 Yu C Z, Oka H, Hashimoto N, et al. Development of damage structure in 16Cr-4Al ODS steels during electron-irradiation[J]. J. Nucl. Mater., 2011, 417: 286
doi: 10.1016/j.jnucmat.2011.02.037
18 Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition[J]. J. Nucl. Mater., 2014, 444: 441
doi: 10.1016/j.jnucmat.2013.10.028
19 Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
20 Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel[J]. Acta Mater., 2009, 57: 5093
doi: 10.1016/j.actamat.2009.07.010
21 Kimura K, Toda Y, Kushima H, et al. Creep strength of high chromium steel with ferrite matrix[J]. Int. J. Press. Vessels Pip., 2010, 87: 282
doi: 10.1016/j.ijpvp.2010.03.016
22 Grybėnas A, Makarevičius V, Baltušnikas A, et al. Correlation between structural changes of M23C6 carbide and mechanical behaviour of P91 steel after thermal aging[J]. Mater. Sci. Eng., 2017, A696: 453
23 Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h—Mechanical properties and microstructure[J]. Mater. Sci. Eng., 2020, A782: 139292
24 Kano S, Yang H L, Shen J J, et al. Investigation of instability of M23C6 particles in F82H steel under electron and ion irradiation conditions[J]. J. Nucl. Mater., 2018, 502: 263
doi: 10.1016/j.jnucmat.2018.02.004
25 Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment[J]. Metall. Mater. Trans., 2004, 35A: 1255
26 Abe F, Horiuchi T, Taneike M, et al. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature[J]. Mater. Sci. Eng., 2004, A378: 299
27 Wang G Q, Li Y F, Zhang J R, et al. Design and preliminary characterization of a novel carbide-free 9Cr-ODS martensitic steel[J]. Fusion Eng. Des., 2020, 160: 111824
doi: 10.1016/j.fusengdes.2020.111824
28 Zhang J R, Li Y F, Wang G Q, et al. Effects of heat treatment on microstructure and mechanical properties of a bimodal grain ultra-low carbon 9Cr-ODS steel[J]. Acta Metall. Sin., 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
28 张家榕, 李艳芬, 王光全 等. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
29 Sawada K, Kubo K, Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel[J]. Mater. Sci. Eng., 2001, A319-321: 784
30 Tan L, Snead L L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors[J]. J. Nucl. Mater., 2016, 478: 42
doi: 10.1016/j.jnucmat.2016.05.037
31 Wang H, Yan W, Van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates[J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
32 Wang W, Yan W, Sha W, et al. Microstructural evolution and mechanical properties of short-term thermally exposed 9/12Cr heat-resistant steels[J]. Metall. Mater. Trans., 2012, 43A: 4113
33 Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application[J]. J. Nucl. Mater., 1996, 233-237: 138
doi: 10.1016/S0022-3115(96)00327-3
34 Hong Z Y, Song G, Chen Y X, et al. Heat treatment process of Y-bearing CNS-I steel fabricated by melting and casting technique[J]. Trans. Mater. Heat Treat., 2019, 40(11): 116
34 洪志远, 宋 刚, 陈映雪 等. 熔铸含钇CNS-I钢的热处理工艺[J]. 材料热处理学报, 2019, 40(11): 116
35 Narita K. Physical chemistry of groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel[J]. Trans. Iron Steel Inst. Japan, 1975, 15: 145
doi: 10.2355/isijinternational1966.15.145
36 Han F L. Progress in modeling of HIP[J]. Powder. Metall. Ind., 2005, 15(1): 12
36 韩凤麟. 热等静压(HIP)工艺模型化进展[J]. 粉末冶金工业, 2005, 15(1): 12
37 Xie R, Lü Z, Liu C M, et al. Microstructure and tensile properties of oxides dispersion strengthened steel produced by different processes[J]. Trans. Mater. Heat Treat., 2019, 40(9): 121
37 谢 锐, 吕 铮, 刘春明 等. 不同工艺制备的氧化物弥散强化钢的微观组织与拉伸性能[J]. 材料热处理学报, 2019, 40(9): 121
38 Klueh R L, Hashimoto N, Maziasz P J. New Nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment[J]. J. Nucl. Mater., 2007, 367-370: 48
doi: 10.1016/j.jnucmat.2007.03.001
39 Deng L F. Microstructure and mechanical property of nitride-strengthened reduced activation martensitic heat-resistant steel[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
39 邓利芬. 新型氮化物强化低活化马氏体耐热钢的组织与力学性能[D]. 沈阳: 中国科学院金属研究所, 2011
40 Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels[J]. Annu. Rev. Mater. Res., 2008, 38: 471
doi: 10.1146/matsci.2008.38.issue-1
41 Marquis E A. Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe-Cr alloys[J]. Appl. Phys. Lett., 2008, 93: 181904
doi: 10.1063/1.3000965
42 Marquis E A, Miller M K, Blavette D, et al. Structural materials: Understanding atomic-scale microstructures[J]. MRS Bull., 2009, 34: 725
doi: 10.1557/mrs2009.246
43 Möslang A, Adelhelm C, Heidinger R. Innovative materials for energy technology[J]. Int. J. Mater. Res., 2008, 99: 1045
doi: 10.3139/146.101743
44 Huang L X, Hu X, Yan W, et al. Effect of heat treatment processes on microstructure and mechanical properties of ton-scale China low activation martensitic steel[J]. At. Energy Sci. Technol., 2013, 47: 412
44 黄礼新, 胡 雪, 严 伟 等. 热处理工艺对吨级CLAM钢组织及力学性能的影响[J]. 原子能科学技术, 2013, 47: 412
doi: 10.7538/yzk.2013.47.S1.0412
45 Steckmeyer A, Praud M, Fournier B, et al. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel[J]. J. Nucl. Mater., 2010, 405: 95
doi: 10.1016/j.jnucmat.2010.07.027
46 Praud M, Mompiou F, Malaplate J, et al. Study of the deformation mechanisms in a Fe-14%Cr ODS alloy[J]. J. Nucl. Mater., 2012, 428: 90
doi: 10.1016/j.jnucmat.2011.10.046
47 Zheng P F, Liu X, Zhang Z J, et al. A preliminary work on the preparation for neutron irradiation of advanced fusion materials using small samples in China[J]. J. Fusion Energy, 2021, 40: 11
doi: 10.1007/s10894-021-00296-3
48 Dadé M, Malaplate J, Garnier J, et al. Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels[J]. Acta Mater., 2017, 127: 165
doi: 10.1016/j.actamat.2017.01.026
49 Kim J H, Byun T S, Hoelzer D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part II—Mechanistic models and predictions[J]. Mater. Sci. Eng., 2013, A559: 111
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.