|
|
新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 |
芮祥1,2, 李艳芬1,2,3( ), 张家榕2,3, 王旗涛1,2, 严伟1,2,3, 单以银1,2,3 |
1中国科学技术大学 材料科学与工程学院 沈阳 110016 2中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 3中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates |
RUI Xiang1,2, LI Yanfen1,2,3( ), ZHANG Jiarong2,3, WANG Qitao1,2, YAN Wei1,2,3, SHAN Yiyin1,2,3 |
1School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
Xiang RUI,
Yanfen LI,
Jiarong ZHANG,
Qitao WANG,
Wei YAN,
Yiyin SHAN.
Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. Acta Metall Sin, 2023, 59(12): 1590-1602.
1 |
Ukai S, Ohtsuka S, Kaito T, et al. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors[A]. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Elsevier, 2017: 357
|
2 |
Li Y F, Nagasaka T, Muroga T, et al. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs[J]. Fusion Eng. Des., 2011, 86: 2495
doi: 10.1016/j.fusengdes.2011.03.004
|
3 |
Muroga T, Nagasaka T, Li Y, et al. Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels[J]. Fusion Eng. Des., 2014, 89: 1717
doi: 10.1016/j.fusengdes.2014.01.010
|
4 |
Bao F Y, Li Y F, Wang G Q, et al. Corrosion behaviors and mechanisms of ODS steel exposed to static Pb-Bi eutectic at 600 and 700oC[J]. Acta Metall. Sin., 2020, 56: 1366
|
4 |
包飞洋, 李艳芬, 王光全 等. ODS钢在600和700℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56: 1366
doi: 10.11900/0412.1961.2020.00035
|
5 |
Xie R, Lv Z, Wang Q, et al. Structure property of 9Cr-ODS steel prepared by hot isostatic pressing equipment[J]. New Technol. New Process, 2019, (3): 7
|
5 |
谢 锐, 吕 铮, 王 晴 等. 热等静压制备9Cr氧化物弥散强化钢的组织性能[J]. 新技术新工艺, 2019, (3): 7
|
6 |
Feng D Z. Effect of Ti and Zr on microstructure and properties of nano-structured 9Cr-ODS steels[D]. Shenyang: Northeastern University, 2015
|
6 |
冯丹竹. Ti和Zr的添加对9Cr-ODS钢微观结构和力学性能的影响[D]. 沈阳: 东北大学, 2015
|
7 |
Ramar A, Spätig P, Schäublin R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy[J]. J. Nucl. Mater., 2008, 382: 210
doi: 10.1016/j.jnucmat.2008.08.009
|
8 |
Chauhan A, Litvinov D, De Carlan Y, et al. Study of the deformation and damage mechanisms of a 9Cr-ODS steel: Microstructure evolution and fracture characteristics[J]. Mater. Sci. Eng., 2016, A658: 123
|
9 |
Peng Y Y, YU L M, Liu Y C, et al. Effect of ageing treatment at 650oC on microstructure and properties of 9Cr-ODS steel[J]. Acta Metall. Sin., 2020, 56: 1075
|
9 |
彭艳艳, 余黎明, 刘永长 等. 650℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56: 1075
doi: 10.11900/0412.1961.2019.00445
|
10 |
Xu S, Zhou Z J, Jia H D. Research progress and prospect of strength-ductility trade-off about irradiation resistant ODS F/M steel[J]. At. Energy Sci. Technol., 2019, 53: 1885
|
10 |
徐 帅, 周张健, 贾皓东. 先进反应堆用ODS F/M钢的强韧性匹配研究进展[J]. 原子能科学技术, 2019, 53: 1885
|
11 |
Kim J H, Byun T S, Hoelzer D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I: Mechanical and microstructural observations[J]. Mater. Sci. Eng., 2013, A559: 101
|
12 |
Kim I S, Okuda T, Kang C Y, et al. Effect of oxide species and thermomechanical treatments on the strength properties of mechanically alloyed Fe-17%Cr ferritic ODS materials[J]. Met. Mater. Int., 2000, 6: 513
|
13 |
Li Z Y, Lu Z, Xie R, et al. Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering[J]. Fusion Eng. Des., 2017, 121: 159
doi: 10.1016/j.fusengdes.2017.06.039
|
14 |
Cayron C, Rath E, Chu I, et al. Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing[J]. J. Nucl. Mater., 2004, 335: 83
doi: 10.1016/j.jnucmat.2004.06.010
|
15 |
Oksiuta Z, Baluc N. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application[J]. Nucl. Fusion, 2009, 49: 055003
|
16 |
Takaya S, Furukawa T, Müller G, et al. Al-containing ODS steels with improved corrosion resistance to liquid lead-bismuth[J]. J. Nucl. Mater., 2012, 428: 125
doi: 10.1016/j.jnucmat.2011.06.046
|
17 |
Yu C Z, Oka H, Hashimoto N, et al. Development of damage structure in 16Cr-4Al ODS steels during electron-irradiation[J]. J. Nucl. Mater., 2011, 417: 286
doi: 10.1016/j.jnucmat.2011.02.037
|
18 |
Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition[J]. J. Nucl. Mater., 2014, 444: 441
doi: 10.1016/j.jnucmat.2013.10.028
|
19 |
Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
|
20 |
Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel[J]. Acta Mater., 2009, 57: 5093
doi: 10.1016/j.actamat.2009.07.010
|
21 |
Kimura K, Toda Y, Kushima H, et al. Creep strength of high chromium steel with ferrite matrix[J]. Int. J. Press. Vessels Pip., 2010, 87: 282
doi: 10.1016/j.ijpvp.2010.03.016
|
22 |
Grybėnas A, Makarevičius V, Baltušnikas A, et al. Correlation between structural changes of M23C6 carbide and mechanical behaviour of P91 steel after thermal aging[J]. Mater. Sci. Eng., 2017, A696: 453
|
23 |
Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h—Mechanical properties and microstructure[J]. Mater. Sci. Eng., 2020, A782: 139292
|
24 |
Kano S, Yang H L, Shen J J, et al. Investigation of instability of M23C6 particles in F82H steel under electron and ion irradiation conditions[J]. J. Nucl. Mater., 2018, 502: 263
doi: 10.1016/j.jnucmat.2018.02.004
|
25 |
Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment[J]. Metall. Mater. Trans., 2004, 35A: 1255
|
26 |
Abe F, Horiuchi T, Taneike M, et al. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature[J]. Mater. Sci. Eng., 2004, A378: 299
|
27 |
Wang G Q, Li Y F, Zhang J R, et al. Design and preliminary characterization of a novel carbide-free 9Cr-ODS martensitic steel[J]. Fusion Eng. Des., 2020, 160: 111824
doi: 10.1016/j.fusengdes.2020.111824
|
28 |
Zhang J R, Li Y F, Wang G Q, et al. Effects of heat treatment on microstructure and mechanical properties of a bimodal grain ultra-low carbon 9Cr-ODS steel[J]. Acta Metall. Sin., 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
|
28 |
张家榕, 李艳芬, 王光全 等. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
|
29 |
Sawada K, Kubo K, Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel[J]. Mater. Sci. Eng., 2001, A319-321: 784
|
30 |
Tan L, Snead L L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors[J]. J. Nucl. Mater., 2016, 478: 42
doi: 10.1016/j.jnucmat.2016.05.037
|
31 |
Wang H, Yan W, Van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates[J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
|
32 |
Wang W, Yan W, Sha W, et al. Microstructural evolution and mechanical properties of short-term thermally exposed 9/12Cr heat-resistant steels[J]. Metall. Mater. Trans., 2012, 43A: 4113
|
33 |
Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application[J]. J. Nucl. Mater., 1996, 233-237: 138
doi: 10.1016/S0022-3115(96)00327-3
|
34 |
Hong Z Y, Song G, Chen Y X, et al. Heat treatment process of Y-bearing CNS-I steel fabricated by melting and casting technique[J]. Trans. Mater. Heat Treat., 2019, 40(11): 116
|
34 |
洪志远, 宋 刚, 陈映雪 等. 熔铸含钇CNS-I钢的热处理工艺[J]. 材料热处理学报, 2019, 40(11): 116
|
35 |
Narita K. Physical chemistry of groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel[J]. Trans. Iron Steel Inst. Japan, 1975, 15: 145
doi: 10.2355/isijinternational1966.15.145
|
36 |
Han F L. Progress in modeling of HIP[J]. Powder. Metall. Ind., 2005, 15(1): 12
|
36 |
韩凤麟. 热等静压(HIP)工艺模型化进展[J]. 粉末冶金工业, 2005, 15(1): 12
|
37 |
Xie R, Lü Z, Liu C M, et al. Microstructure and tensile properties of oxides dispersion strengthened steel produced by different processes[J]. Trans. Mater. Heat Treat., 2019, 40(9): 121
|
37 |
谢 锐, 吕 铮, 刘春明 等. 不同工艺制备的氧化物弥散强化钢的微观组织与拉伸性能[J]. 材料热处理学报, 2019, 40(9): 121
|
38 |
Klueh R L, Hashimoto N, Maziasz P J. New Nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment[J]. J. Nucl. Mater., 2007, 367-370: 48
doi: 10.1016/j.jnucmat.2007.03.001
|
39 |
Deng L F. Microstructure and mechanical property of nitride-strengthened reduced activation martensitic heat-resistant steel[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
|
39 |
邓利芬. 新型氮化物强化低活化马氏体耐热钢的组织与力学性能[D]. 沈阳: 中国科学院金属研究所, 2011
|
40 |
Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels[J]. Annu. Rev. Mater. Res., 2008, 38: 471
doi: 10.1146/matsci.2008.38.issue-1
|
41 |
Marquis E A. Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe-Cr alloys[J]. Appl. Phys. Lett., 2008, 93: 181904
doi: 10.1063/1.3000965
|
42 |
Marquis E A, Miller M K, Blavette D, et al. Structural materials: Understanding atomic-scale microstructures[J]. MRS Bull., 2009, 34: 725
doi: 10.1557/mrs2009.246
|
43 |
Möslang A, Adelhelm C, Heidinger R. Innovative materials for energy technology[J]. Int. J. Mater. Res., 2008, 99: 1045
doi: 10.3139/146.101743
|
44 |
Huang L X, Hu X, Yan W, et al. Effect of heat treatment processes on microstructure and mechanical properties of ton-scale China low activation martensitic steel[J]. At. Energy Sci. Technol., 2013, 47: 412
|
44 |
黄礼新, 胡 雪, 严 伟 等. 热处理工艺对吨级CLAM钢组织及力学性能的影响[J]. 原子能科学技术, 2013, 47: 412
doi: 10.7538/yzk.2013.47.S1.0412
|
45 |
Steckmeyer A, Praud M, Fournier B, et al. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel[J]. J. Nucl. Mater., 2010, 405: 95
doi: 10.1016/j.jnucmat.2010.07.027
|
46 |
Praud M, Mompiou F, Malaplate J, et al. Study of the deformation mechanisms in a Fe-14%Cr ODS alloy[J]. J. Nucl. Mater., 2012, 428: 90
doi: 10.1016/j.jnucmat.2011.10.046
|
47 |
Zheng P F, Liu X, Zhang Z J, et al. A preliminary work on the preparation for neutron irradiation of advanced fusion materials using small samples in China[J]. J. Fusion Energy, 2021, 40: 11
doi: 10.1007/s10894-021-00296-3
|
48 |
Dadé M, Malaplate J, Garnier J, et al. Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels[J]. Acta Mater., 2017, 127: 165
doi: 10.1016/j.actamat.2017.01.026
|
49 |
Kim J H, Byun T S, Hoelzer D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part II—Mechanistic models and predictions[J]. Mater. Sci. Eng., 2013, A559: 111
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|