Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 585-598    DOI: 10.11900/0412.1961.2021.00208
  本期目录 | 过刊浏览 |
冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响
王长胜1,2, 付华栋1,2,3(), 张洪涛1,2, 谢建新1,2,3()
1北京科技大学 北京材料基因工程高精尖创新中心 北京 100083
2北京科技大学 现代交通金属材料与加工技术北京实验室 北京 100083
3北京科技大学 材料先进制备技术教育部重点实验室 北京 100083
Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys
WANG Changsheng1,2, FU Huadong1,2,3(), ZHANG Hongtao1,2, XIE Jianxin1,2,3()
1Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
2Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
3Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
Changsheng WANG, Huadong FU, Hongtao ZHANG, Jianxin XIE. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. Acta Metall Sin, 2023, 59(5): 585-598.

全文: PDF(4527 KB)   HTML
摘要: 

采用DSC、TEM、导电率和力学性能等测试方法,研究了不同冷轧变形量对Cu-3.0Ni-0.60Si-0.16Zn-0.15Cr-0.03P (质量分数,%)合金组织性能与析出行为的影响,旨在通过工艺调控提升该合金的综合性能。通过对比不同冷轧变形后合金的开始析出温度和再结晶温度以及时效后合金的组织性能,确定了高性能Cu-Ni-Si系合金的形变-时效工艺参数,明确了冷轧变形量对合金时效析出动力学的影响规律和强化相析出的调控机制;合金经过95%冷轧+ 450℃、60 min形变热处理后获得了显著优于现有Cu-Ni-Si合金(如C70250)的性能,其抗拉强度为(841 ± 10) MPa,导电率为(52.2 ± 0.3)%IACS。

关键词 冷轧变形时效析出微观组织析出动力学    
Abstract

The advancement of integrated circuit manufacturing process and chip packaging technology has improved the performance requirements for lead frame copper alloy. In the field of high-performance copper alloys, balancing and improving mechanical and electrical conductivity (EC) has been a challenge. This work investigates the effect of different cold-rolling deformations (0, 65%, 75%, 85%, and 95%) on the microstructure, properties, and precipitation behavior of Cu-3.0Ni-0.60Si-0.16Zn-0.15Cr-0.03P alloy to enhance its comprehensive performance through process control. The deformation-aging process parameters of high-performance Cu-Ni-Si alloys were determined by comparing the precipitation and recrystallization initial temperatures, microstructures, and properties of the samples after aging. The effect of cold-rolling deformation on precipitation kinetics and mechanism was studied. By optimizing the process parameters, the properties of the alloy are observed to be better than the existing Cu-Ni-Si alloys after 95% cold-rolling deformation and aging at 450oC for 60 min, with an ultimate tensile strength of (841 ± 10) MPa, and an EC of (52.2 ± 0.3)%IACS. This work's relevant research findings can provide theoretical reference and data support for realizing the comprehensive property enhancement of high-performance copper alloys.

Key wordscold-rolling deformation    aging precipitation    microstructure    precipitation kinetics
收稿日期: 2021-05-17     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2020YFB0311101);国家自然科学基金项目(51974028);国家自然科学基金项目(92066205);北京市科技新星计划项目(Z191100001119125);小米青年学者项目
作者简介: 王长胜,男,1986年生,博士生
图1  不同冷轧变形量下Cu-3.28Ni-0.60Si-0.22Zn-0.11Cr-0.04P合金的DSC测试结果
图2  不同程度冷轧后合金显微组织的OM像(a) ε = 65% (b) ε = 75% (c) ε = 85% (d) ε = 95%
图3  不同程度冷轧变形对时效前合金导电率和硬度的影响
图4  不同程度冷轧样品在400、450和500℃下时效60 min的显微组织OM像(a, e, i) ε = 65% (b, f, j) ε = 75% (c, g, k) ε = 85% (d, h, l) ε = 95%
图5  85%冷轧变形后合金基体内位错与早期析出相
图6  85%冷轧变形合金时效中期析出相分布与形态
图7  85%冷轧变形合金时效120 min后析出相形貌、EDS及选区电子衍射(SAED)花样
图8  冷轧变形+不同温度时效后合金的硬度与导电率
图9  冷轧变形试样时效后的拉伸性能及合金性能分布[7,10,11,13,15,16,28,34]
图10  时效时间与析出相体积分数之间的关系(a) 400oC (b) 450oC (c) 500oC
Deformation / %400oC450oC500oC
nbnbnb
00.476970.1968160.531490.1439920.606330.093694
650.707260.0890450.501740.1849440.661540.075043
750.594240.1226170.574030.1002210.596980.116676
850.527620.1613060.538650.1037050.537060.170424
950.669980.0885100.544470.1184760.462260.283687
表1  不同时效温度下合金Avrami方程系数n和b的值
图11  不同温度时效时合金导电率实验值与计算值(a) 400oC (b) 450oC (c) 500oC
图12  冷轧变形量对不同温度下时效析出动力学S曲线的影响(a) 400oC (b) 450oC (c) 500oC
1 Jiang Y X, Lou H F, Xie H F, et al. Development status and prospects of advanced copper alloy[J]. Strateg. Study CAE, 2020, 22(5): 84
1 姜业欣, 娄花芬, 解浩峰 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84
2 Lei Q, Xiao Z, Hu W P, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J]. Mater. Sci. Eng., 2017, A697: 37
3 Lee S, Matsunaga H, Sauvage X, et al. Strengthening of Cu-Ni-Si alloy using high-pressure torsion and aging[J]. Mater. Charact., 2014, 90: 62
doi: 10.1016/j.matchar.2014.01.006
4 Wang C S, Fu H D, Xie J X. Dynamic recrystallization behavior and microstructure evolution of high-performance Cu-3.28Ni-0.6Si-0.22Zn-0.11Cr-0.04P during hot compression[J]. Rare Met., 2021, 40: 156
doi: 10.1007/s12598-020-01578-z
5 Xu S, Fu H D, Wang Y T, et al. Effect of Ag addition on the microstructure and mechanical properties of Cu-Cr alloy[J]. Mater. Sci. Eng., 2018, A726: 208
6 Zhao Z Q, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy[J]. J. Alloys Compd., 2018, 752: 191
doi: 10.1016/j.jallcom.2018.04.159
7 Gholami M, Vesely J, Altenberger I, et al. Effects of microstructure on mechanical properties of CuNiSi alloys[J]. J. Alloys Compd., 2017, 696: 201
doi: 10.1016/j.jallcom.2016.11.233
8 Li D M, Jiang B B, Li X N, et al. Composition rule of high hardness and electrical conductivity Cu-Ni-Si alloys[J]. Acta Metall. Sin., 2019, 55: 1291
doi: 10.11900/0412.1961.2019.00080
8 李冬梅, 姜贝贝, 李晓娜 等. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55: 1291
doi: 10.11900/0412.1961.2019.00080
9 Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2008, A483-484: 117
10 Liu F, Li J, Peng L J, et al. Simultaneously enhanced hardness and electrical conductivity in a Cu-Ni-Si alloy by addition of Cobalt[J]. J. Alloys Compd., 2021, 862: 158667
doi: 10.1016/j.jallcom.2021.158667
11 Wang W, Kang H J, Chen Z N, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2016, A673: 378
12 Hou L L, Yin Z X, Gan C L, et al. Research progress of Cu-Ni-Si alloy for lead frame and its preparation and processing technology[J]. Mater. Res. Appl., 2020, 14: 59
12 侯绿林, 尹振兴, 甘春雷 等. 引线框架用Cu-Ni-Si合金及其制备加工工艺的研究进展[J]. 材料研究与应用, 2020, 14: 59
13 Li J, Huang G J, Mi X J, et al. Effect of Ni/Si mass ratio and thermomechanical treatment on the microstructure and properties of Cu-Ni-Si alloys[J]. Materials, 2019, 12: 2076
doi: 10.3390/ma12132076
14 Ghosh G, Miyake J, Fine M E. The systems-based design of high-strength, high-conductivity alloys[J]. JOM, 1997, 49(3): 56
15 Chen W, Li Z, Xie H, et al. Influence of Zinc on coarsening of δ-Ni2Si particles, aging behavior and hardness in a Cu-Ni-Si alloy[J]. J. Mater. Eng. Perform., 2017, 26: 2459
doi: 10.1007/s11665-017-2738-z
16 Zhang Y, Tian B H, Volinsky A A, et al. Microstructure and precipitate's characterization of the Cu-Ni-Si-P alloy[J]. J. Mater. Eng. Perform., 2016, 25: 1336
doi: 10.1007/s11665-016-1987-6
17 Wang W, Guo E Y, Chen Z N, et al. Correlation between microstructures and mechanical properties of cryorolled CuNiSi alloys with Cr and Zr alloying[J]. Mater. Charact., 2018, 144: 532
doi: 10.1016/j.matchar.2018.08.003
18 Peng L J, Ma J M, Liu X Y, et al. Influence of different treatment processes on microstructure and properties of Cu-Ni-Co-Si alloy[J]. Rare Met. Mater. Eng., 2019, 48: 1969
18 彭丽军, 马吉苗, 刘兴宇 等. 不同处理工艺对Cu-Ni-Co-Si合金组织与性能的影响[J]. 稀有金属材料与工程, 2019, 48: 1969
19 Xiao X P, Xu H, Chen J S, et al. Coarsening behavior of (Ni, Co)2Si particles in Cu-Ni-Co-Si alloy during aging treatment[J]. Rare Met., 2019, 38: 1062
doi: 10.1007/s12598-018-1169-9
20 Feng G B, Yu F X, Cheng J Y, et al. Re-aging behaviour and precipitated phase characteristics of high-performance Cu-Ni-Co-Si alloy[J]. Trans. Mater. Heat Treat., 2019, 40(8): 76
20 冯桄波, 余方新, 程建奕 等. 高性能Cu-Ni-Co-Si合金的二次时效行为及析出相特征[J]. 材料热处理学报, 2019, 40(8): 76
21 Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning[J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
22 Xiao X P, Xiong B Q, Wang Q S, et al. Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments[J]. Rare Met., 2013, 32: 144
doi: 10.1007/s12598-013-0024-2
23 Kareva N T, Yakovleva I L, Samoilova O V. On the precipitation strengthening of Cu-2.6Ni-0.6Si-0.6Cr bronzes[J]. Phys. Met. Metallogr., 2017, 118: 795
doi: 10.1134/S0031918X17080075
24 Li H X, Hao X J, Zhao G, et al. Effect of plastic deformation on discontinuous coarsening of spinodally decomposed microstructure in Cu-Ni-Fe alloy[J]. Acta Metall. Sin., 1999, 35: 449
24 李洪晓, 郝新江, 赵 刚 等. 塑性变形对Cu-Ni-Fe合金失稳分解组织不连续粗化的影响[J]. 金属学报, 1999, 35: 449
25 Rdzawski Z, Stobrawa J. Thermomechanical processing of Cu-Ni-Si-Cr-Mg alloy[J]. Mater. Sci. Technol., 1993, 9: 142
doi: 10.1179/mst.1993.9.2.142
26 Suzuki S, Shibutani N, Mimura K, et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling[J]. J. Alloys Compd., 2006, 417: 116
doi: 10.1016/j.jallcom.2005.09.037
27 Watanabe H, Kunimine T, Watanabe C, et al. Tensile deformation characteristics of a Cu-Ni-Si alloy containing trace elements processed by high-pressure torsion with subsequent aging[J]. Mater. Sci. Eng., 2018, A730: 10
28 Liu F, Mi X J, Ma J M, et al. Microstructure and properties of low concentration of Cu-Ni-Si alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 286
28 刘 峰, 米绪军, 马吉苗 等. 低浓度Cu-Ni-Si合金的组织与性能[J]. 中国有色金属学报, 2019, 29: 286
29 Wang Y H, Wang M P, Hong B, et al. Microstructure and properties of Cu-15Ni-8Sn-0.4Si alloy[J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 1051
30 Sun X L, Jie J C, Wang T M, et al. Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu-Cr-Ni-Si alloy for lead frames applications[J]. Mater. Sci. Eng., 2021, A809: 140521
31 Lei Q, Li Z, Gao Y, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J]. J. Alloys Compd., 2017, 695: 2413
doi: 10.1016/j.jallcom.2016.11.137
32 Yang J Z, Bu K, Song K X, et al. Influence of low-temperature annealing temperature on the evolution of the microstructure and mechanical properties of Cu-Cr-Ti-Si alloy strips[J]. Mater. Sci. Eng., 2020, A798: 140120
33 Han S Z, Choi E A, Lim S H, et al. Alloy design strategies to increase strength and its trade-offs together[J]. Prog. Mater. Sci., 2021, 117: 100720
doi: 10.1016/j.pmatsci.2020.100720
34 Yang H Y, Ma Z C, Lei C H, et al. High strength and high conductivity Cu alloys: A review[J]. Sci. China Technol. Sci., 2020, 63: 2505
doi: 10.1007/s11431-020-1633-8
35 Geng Y F, Ban Y J, Wang B J, et al. A review of microstructure and texture evolution with nanoscale precipitates for copper alloys[J]. J. Mater. Res. Technol., 2020, 9: 11918
doi: 10.1016/j.jmrt.2020.08.055
36 Jiang L, Fu H D, Wang C S, et al. Enhanced mechanical and electrical properties of a Cu-Ni-Si alloy by thermo-mechanical processing[J]. Metall. Mater. Trans., 2020, 51A: 331
37 Huang G J, Xiao X P, Ma J M, et al. Effect of solid solution and aging process on microstructure and properties of Cu-1.4Ni-1.2Co-0.6Si alloy[J]. Trans. Mater. Heat Treat., 2014, 35(8): 58
37 黄国杰, 肖翔鹏, 马吉苗 等. 固溶时效对Cu-1.4Ni-1.2Co-0.6Si合金组织性能的影响[J]. 材料热处理学报, 2014, 35(8): 58
38 Yi J, Jia Y L, Zhao Y Y, et al. Precipitation behavior of Cu-3.0Ni-0.72Si alloy[J]. Acta Mater., 2019, 166: 261
doi: 10.1016/j.actamat.2018.12.047
39 Wu Y K, Li Y, Lu J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy[J]. Mater. Sci. Eng., 2019, A742: 501
40 Hu T, Chen J Z, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J]. Acta Mater., 2013, 61: 1210
doi: 10.1016/j.actamat.2012.10.031
41 Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging[J]. J. Alloys Compd., 2014, 614: 189
doi: 10.1016/j.jallcom.2014.06.089
42 Liao Y H, Xie M W, Chen H M, et al. Thermodynamics and kinetics of discontinuous precipitation in Cu-9Ni-xSn alloy[J]. J. Alloys Compd., 2020, 827: 154314
doi: 10.1016/j.jallcom.2020.154314
43 Lei Q, Li Z, Pan Z Y, et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1006
doi: 10.1016/S1003-6326(09)60249-1
44 Su J H, Liu P, Li H J, et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Mater. Lett., 2007, 61: 4963
doi: 10.1016/j.matlet.2007.03.085
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[5] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.