Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 257-266    DOI: 10.11900/0412.1961.2021.00217
  研究论文 本期目录 | 过刊浏览 |
机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能
朱云鹏1,2,3(), 覃嘉宇1,3, 王金辉1,3, 马鸿斌1,3, 金培鹏1,3, 李培杰2
1.青海大学 青海省新型轻合金重点实验室 西宁 810016
2.清华大学 机械工程学院 北京 100084
3.青海大学 青海省轻金属合金及深加工工程技术研究中心 西宁 810016
Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing
ZHU Yunpeng1,2,3(), QIN Jiayu1,3, WANG Jinhui1,3, MA Hongbin1,3, JIN Peipeng1,3, LI Peijie2
1.Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining 810016, China
2.Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
3.Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China
引用本文:

朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
Yunpeng ZHU, Jiayu QIN, Jinhui WANG, Hongbin MA, Peipeng JIN, Peijie LI. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. Acta Metall Sin, 2023, 59(2): 257-266.

全文: PDF(3906 KB)   HTML
摘要: 

利用球磨与粉末冶金工艺相结合制备AZ61超细晶镁合金,分析了球磨对其晶粒尺寸、析出相、织构及室温拉伸性能的影响。结果表明,球磨及粉末冶金制备的AZ61镁合金与未经球磨处理制备的镁合金相比,其晶粒尺寸由0.91 μm细化到0.68 μm,且球磨处理促进了Mg17Al12的动态析出及细化,同时弱化了基面织构,其屈服强度、抗拉强度和伸长率分别为393.1 MPa、431.9 MPa和8.5%,综合力学性能优于其他工艺制备的AZ61镁合金。强化机制分析表明,细晶强化的贡献达到90%以上,沿晶界分布的Mg17Al12会降低Orowan强化效果,基面织构的弱化会降低屈服强度。未经球磨处理的镁合金的断裂机制是由镁粉表面的氧化引发粉体脱黏主导的;经球磨处理后其断裂机理为脱黏的粉体与周围未脱黏的组织变形不匹配及晶界上Mg17Al12数量增加导致的。

关键词 机械球磨粉末冶金AZ61超细晶镁合金动态析出强化机制    
Abstract

The Mg-Al series alloys are well known for their low density, high specific strength, and superior damping capability. However, the application of Mg-Al series alloys is often limited by inadequate mechanical properties. To fulfill the growing demand for lightweight structural components, ultra-fine grained magnesium alloys with superior mechanical properties have gained attention. Mechanical milling and powder metallurgy were used to produce the AZ61 ultra-fine grained magnesium alloy with super-high tensile characteristics. The effects of mechanical milling on the grain size, precipitates, texture, and tensile properties of AZ61 ultra-fine grained magnesium alloy were investigated. The grain size of the AZ61 alloy produced by mechanical milling and powder metallurgy was reduced from 0.91 μm to 0.68 μm when compared to that produced by non-mechanical milling. Mechanical milling accelerated the dynamic precipitation and refining of Mg17Al12 while weakening the basal texture. The yield strength, tensile strength, and elongation of AZ61 ultra-fine grained magnesium alloy are 393.1 MPa, 431.9 MPa, and 8.5%, respectively, which are superior to the AZ61 alloy produced by other processes. The theoretical grain refinement and Orowan strengthening mechanisms of AZ61 alloy were calculated, and it shows that the grain refinement strengthening contributes more than 90% of the yield strength. The Orowan strengthening was overestimated when Mg17Al12 was distributed at grain boundaries. The weakening of basal texture resulted in a reduction in yield strength. The fracture mechanism of the AZ61 alloy without mechanical milling is dominated by oxidation on the surface of the AZ61 powder, which initiates interparticle debonding. The fracture mechanism of the AZ61 alloy with mechanical milling is dominated by deformation mismatch between the deboned powders and the stronger bonded powders, and the increase in the amount of Mg17Al12 along the grain boundary.

Key wordsmechanical milling    powder metallurgy    AZ61 ultrafine-grained magnesium alloy    dynamic precipitation    strengthening mechanism
收稿日期: 2021-05-19     
ZTFLH:  TB31  
基金资助:青海省科技厅基础研究项目(2020-ZJ-707)
作者简介: 朱云鹏,男,1985年生,博士生
图1  拉伸试样示意图
图2  球磨前后AZ61镁粉的SEM像及烧结后AZ61镁合金的OM像
图3  球磨前后AZ61镁粉及烧结后AZ61镁合金的XRD谱
图4  挤压态AZ61镁合金的XRD谱、SEM像及EDS分析
Extruded AZ61 alloyGrain size / μmDiameter of Mg17Al12 / nmVolume fraction of Mg17Al12 / %
Without mechanical milling0.912306.6
With mechanical milling0.6817011.7
表1  挤压态AZ61镁合金的晶粒尺寸、析出相体积分数及析出相尺寸
图5  挤压态AZ61镁合金的TEM像
图6  挤压态AZ61镁合金的织构
图7  挤压态AZ61镁合金的室温拉伸性能
图8  本工作和其他文献报道[1,7,10,23~27]的 AZ61镁合金室温力学性能比较
图9  挤压态AZ61镁合金拉伸断口的SEM像
1 Luo X C, Zhang D T, Zhang W W, et al. Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: Effect of sample orientation[J]. Mater. Sci. Eng., 2018, A725: 398
2 Lee J U, Kim S H, Kim Y J, et al. Effects of homogenization time on aging behavior and mechanical properties of AZ91 alloy[J]. Mater. Sci. Eng., 2018, A714: 49
3 Kang J W, Sun X F, Deng K K, et al. High strength Mg-9Al serial alloy processed by slow extrusion[J]. Mater. Sci. Eng., 2017, A697: 211
4 Kim W J, Jeong H G, Jeong H T. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging[J]. Scr. Mater., 2009, 61: 1040
doi: 10.1016/j.scriptamat.2009.08.020
5 Xu B Q, Sun J P, Yang Z Q, et al. Microstructure and anisotropic mechanical behavior of the high-strength and ductility AZ91 Mg alloy processed by hot extrusion and multi-pass RD-ECAP[J]. Mater. Sci. Eng., 2020, A780: 139191
6 Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging[J]. Acta Metall. Sin., 2020, 56: 723
doi: 10.11900/0412.1961.2019.00292
6 张 阳, 邵建波, 陈 韬 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56: 723
7 Luo X C, Kang L M, Liu H L, et al. Enhancing mechanical properties of AZ61 magnesium alloy via friction stir processing: Effect of processing parameters[J]. Mater. Sci. Eng., 2020, A797: 139945
8 Sun W T, Qiao X G, Zheng M Y, et al. Achieving ultra-high hardness of nanostructured Mg-8.2Gd-3.2Y-1.0Zn-0.4Zr alloy produced by a combination of high pressure torsion and ageing treatment[J]. Scr. Mater., 2018, 155: 21
doi: 10.1016/j.scriptamat.2018.06.009
9 Tang L L, Zhao Y H, Islamgaliev R K, et al. Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP[J]. Mater. Sci. Eng., 2016, A670: 280
10 Miura H, Maruoka T, Jonas J J. Effect of ageing on microstructure and mechanical properties of a multi-directionally forged Mg-6Al-1Zn alloy[J]. Mater. Sci. Eng., 2013, A563: 53
11 Qin J Y, Li X Q, Jin P P, et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite[J]. Acta Metall. Sin., 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
11 覃嘉宇, 李小强, 金培鹏 等. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
12 Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J]. J. Mater. Res., 2001, 16: 1894
doi: 10.1557/JMR.2001.0260
13 Taleghani M A J, Torralba J M. The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing[J]. Mater. Lett., 2013, 98: 182
doi: 10.1016/j.matlet.2013.02.052
14 Yu H, Sun Y, Hu L X, et al. The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling[J]. J. Alloys Compd., 2017, 704: 537
doi: 10.1016/j.jallcom.2017.02.029
15 Zhang H, Zha M, Tian T, et al. Prominent role of high-volume fraction Mg17Al12 dynamic precipitations on multimodal microstructure formation and strength-ductility synergy of Mg-Al-Zn alloys processed by hard-plate rolling (HPR)[J]. Mater. Sci. Eng., 2021, A808: 140920
16 Ma X L, Prameela S E, Yi P, et al. Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: A comparative study to conventional aging[J]. Acta Mater., 2019, 172: 185
doi: 10.1016/j.actamat.2019.04.046
17 Wei J S, Jiang S N, Chen Z Y, et al. Increasing strength and ductility of a Mg-9Al alloy by dynamic precipitation assisted grain refinement during multi-directional forging[J]. Mater. Sci. Eng., 2020, A780: 139192
18 Zhu J, Liu J X, Wang Y, et al. Super-high strength Mg-7.5Al-0.8Zn alloy prepared by rapidly solidified powder metallurgy and low temperature extrusion[J]. Adv. Eng. Mater., 2018, 20: 1700712
doi: 10.1002/adem.201700712
19 Das S K, Brodusch N, Gauvin R, et al. Grain boundary diffusion of Al in Mg[J]. Scr. Mater., 2014, 80: 41
doi: 10.1016/j.scriptamat.2014.02.008
20 Mondet M, Barraud E, Lemonnier S, et al. Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering[J]. Acta Mater., 2016, 119: 55
doi: 10.1016/j.actamat.2016.08.006
21 Li X, Jiao F, Al-Samman T, et al. Influence of second-phase precipitates on the texture evolution of Mg-Al-Zn alloys during hot deformation[J]. Scr. Mater., 2012, 66: 159
doi: 10.1016/j.scriptamat.2011.10.028
22 Sun X F, Wang C J, Deng K K, et al. High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase[J]. J. Alloys Compd., 2018, 732: 328
doi: 10.1016/j.jallcom.2017.10.164
23 Nguyen Q B, Chua Y H D, Tun K S, et al. Effect of addition of Nano-Al2O3 and copper particulates and heat treatment on the tensile response of AZ61 magnesium alloy[J]. J. Eng. Mater. Technol., 2013, 135: 031004
24 Hilšer O, Rusz S, Tański T, et al. Mechanical properties and structure of AZ61 magnesium alloy processed by equal channel angular pressing[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 179: 012028
25 Zhang C C, Wang H Y, Zha M, et al. Microstructure and tensile properties of AZ61 alloy sheets processed by high-ratio extrusion with subsequent direct aging treatment[J]. Materials, 2018, 11: 895
doi: 10.3390/ma11060895
26 Li J Q, Liu J, Cui Z S. Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate[J]. Mater. Sci. Eng., 2015, A643: 32
27 Rong L, Nie Z R, Liang X P. Microstructure and mechanical properties of AZ61 alloy processed by rotary swaging[J]. Rare Met. Mater. Eng., 2020, 49: 3479
27 荣 莉, 聂祚仁, 梁霄鹏. 热旋锻对AZ61镁合金显微组织与力学性能的影响[J]. 稀有金属材料与工程, 2020, 49: 3479
28 Ono N, Nowak R, Miura S. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium[J]. Mater. Lett., 2004, 58: 39
doi: 10.1016/S0167-577X(03)00410-5
29 Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scr. Mater., 2006, 54: 1321
doi: 10.1016/j.scriptamat.2005.12.017
30 Kim W J, Lee J B, Kim W Y, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling[J]. Scr. Mater., 2007, 56: 309
doi: 10.1016/j.scriptamat.2006.09.034
31 Zhu T P, Chen Z W, Gao W. Effect of cooling conditions during casting on fraction of β-Mg17Al12 in Mg-9Al-1Zn cast alloy[J]. J. Alloys Compd., 2010, 501: 291
doi: 10.1016/j.jallcom.2010.04.090
[1] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[4] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[5] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[6] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[7] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[8] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[9] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[10] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[11] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[12] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[13] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[14] 郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
[15] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.