Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1547-1558    DOI: 10.11900/0412.1961.2023.00061
  本期目录 | 过刊浏览 |
微量AlTiInconel 690合金高温氧化行为的影响
徐文国1,2, 郝文江3, 李应举1(), 赵庆彬3, 卢炳聿1,2, 郭和一3, 刘天宇1,2, 冯小辉1, 杨院生1()
1中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
3中国核电工程有限公司 北京 100840
Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy
XU Wenguo1,2, HAO Wenjiang3, LI Yingju1(), ZHAO Qingbin3, LU Bingyu1,2, GUO Heyi3, LIU Tianyu1,2, FENG Xiaohui1, YANG Yuansheng1()
1Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
引用本文:

徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
Wenguo XU, Wenjiang HAO, Yingju LI, Qingbin ZHAO, Bingyu LU, Heyi GUO, Tianyu LIU, Xiaohui FENG, Yuansheng YANG. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. Acta Metall Sin, 2023, 59(12): 1547-1558.

全文: PDF(4877 KB)   HTML
摘要: 

研究了微量Al、Ti元素对Inconel 690合金在850~1200℃下氧化行为的影响。结果表明,添加微量Al元素减小了Inconel 690合金在850~1200℃范围内的氧化增重,提高了合金的抗氧化性能。Al、Ti元素的复合添加提高了Inconel 690合金在850℃下的氧化速率。但在1000和1200℃下,该合金的平均氧化速率和氧化增重又均减小。添加微量Al元素后,晶界处形成的Al2O3颗粒阻碍了Cr3+的扩散,抑制Cr2O3膜的生长并减少合金内部孔洞的数量,从而提高氧化膜与基体的结合力,降低合金的氧化速率。当Al和Ti元素复合添加时,Ti4+在Cr2O3膜中作为高价离子掺杂,促进阳离子向外扩散,加快合金的氧化,导致合金在低温下的抗氧化性能略有下降。但Ti在氧化过程中倾向于向Cr2O3膜的表层偏聚,形成了不易挥发的富Ti氧化层,抑制高温下Cr2O3的挥发和剥落,提高合金在1000和1200℃下的抗氧化性能。

关键词 Inconel 690合金高温氧化微量元素扩散氧化膜剥落    
Abstract

Inconel 690 alloy is a nickel-based alloy with a high chromium content that provides excellent oxidation and corrosion resistances. The high oxidation resistances of the alloy is attributed to the protective Cr2O3 that forms during oxidation, which prevents the outward diffusion of alloy elements and the inward diffusion of oxygen. However, when the temperature exceeds 1000oC, the volatilization and spallation of the Cr2O3 oxide scale severely reduce the oxidation resistance of the Inconel 690 alloy. The addition of trace active elements is an effective way to improve the oxidation resistance of superalloys; however, the effects of these elements on the oxidation behavior and mechanism of the Inconel 690 alloy remain unclear. In this study, the oxidation behavior of Inconel 690 alloys with varying contents of Al and Ti elements was systematically studied through oxidation kinetics, morphology observation, and element analysis. In addition, the effects of Al, Ti, and their coadditions on the oxidation behavior and mechanism of the Inconel 690 alloy were investigated. The results indicate that the addition of Al reduces the oxidation mass gain and improves the oxidation resistance of the Inconel 690 alloy. Moreover, the addition of Al and Ti accelerates the oxidation rate of the alloy at 850oC, but retards it at 1000 and 1200oC. The positive influence of Al addition can be attributed to the fact that Al2O3 particles precipitated at the grain boundary hinder the diffusion of Cr3+ along the grain boundary. The slow diffusion of Cr3+ inhibits the growth of the Cr2O3 oxide scale and reduces the number of holes in the alloy. As a result, the oxidation resistance of the alloy increases owing to the decrease in the oxidation rate and the increase in adhesion between the oxide scale and the substrate. When Al and Ti are added, Ti4+ , which acts as a high-valence ion, is doped into the Cr2O3 scale, promoting the outward diffusion of Cr3+ and accelerating the oxidation rate of the alloy at lower temperatures (850oC). However, during oxidation, Ti tends to converge toward the surface of the Cr2O3 scale and form a nonvolatile Ti-rich oxide layer. The formation of this layer inhibits the volatilization and peeling of Cr2O3, thereby increasing the oxidation resistance of the Inconel 690 alloy at 1000 and 1200oC.

Key wordsInconel 690 alloy    high temperature oxidation    trace element    diffusion    oxide scale spallation
收稿日期: 2023-03-22     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金项目(51831007);辽宁省应用基础研究计划项目(2023JH2/101300142)
通讯作者: 李应举,yjli@imr.ac.cn,主要从事高温合金研发及工程化研究;
杨院生,ysyang@imr.ac.cn,主要从事合金的凝固与先进制备技术研究
作者简介: 徐文国,男,1998年生,硕士生
AlloyCrFeSiMnCAlTiNi
69029.59.800.300.210.030--Bal.
690-Al29.69.510.380.220.0230.34-Bal.
690-(Al, Ti)29.99.410.310.220.0250.390.41Bal.
表1  690、690-Al和690-(Al, Ti)合金的化学成分 (mass fraction / %)
图1  690、690-Al和690-(Al, Ti)合金锻造态显微组织的OM像和SEM像
图2  690、690-Al和690-(Al, Ti)合金在850、1000和1200℃下氧化100 h的氧化增重曲线
Temperature / oCAlloyK' / (g·m-2·h-1)Oxidation resistance level
8506900.011Complete oxidation resistance
690-Al0.009Complete oxidation resistance
690-(Al, Ti)0.016Complete oxidation resistance
10006900.103Oxidation resistance
690-Al0.053Complete oxidation resistance
690-(Al, Ti)0.069Complete oxidation resistance
12006900.618Oxidation resistance
690-Al0.652Oxidation resistance
690-(Al, Ti)0.544Oxidation resistance
表2  690、690-Al和690-(Al, Ti)合金在850、1000和1200℃的抗氧化等级
图3  690、690-Al和690-(Al, Ti)合金在850、1000和1200℃下氧化100 h后氧化膜表面形貌的SEM像
图4  690、690-Al和690-(Al, Ti)合金在850、1000和1200℃下氧化100 h的表面XRD谱
图5  690、690-Al和690-(Al, Ti)合金在850℃下氧化100 h后氧化膜截面形貌的SEM像和元素分布
图6  690、690-Al和690-(Al, Ti)合金在1000℃下氧化100 h后氧化膜截面形貌的SEM像和元素分布
图7  690、690-Al和690-(Al, Ti)合金在1200℃下氧化100 h后氧化膜截面形貌的SEM像和元素分布
图8  690、690-Al和690-(Al, Ti)合金在850、1000和1200℃下氧化100 h后的Cr元素分布
图9  Al、Ti对氧化膜挥发和抗剥落性能影响的示意图
1 Allen G C, Dyke J M, Harris S J, et al. The oxidation of Inconel-690 alloy at 600 K in air[J]. Appl. Surf. Sci., 1988, 31: 220
doi: 10.1016/0169-4332(88)90063-3
2 Hussain N, Shahid K A, Khan I H, et al. Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air: Ⅱ[J]. Oxid. Met., 1995, 43: 363
doi: 10.1007/BF01047036
3 Park S Y, Lee D B. Oxidation of Inconel 690 alloys at 800-1000oC in air[J]. Appl. Mech. Mater., 2014, 607: 7
doi: 10.4028/www.scientific.net/AMM.607
4 Mechehoud F, Benaioun N E, Hakiki N E, et al. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM)[J]. Appl. Surf. Sci., 2018, 433: 66
doi: 10.1016/j.apsusc.2017.10.094
5 Li X H, Huang F, Wang J Q, et al. Influences of TiN inclusion on corrosion and stress corrosion behaviors of alloy 690 tube in high temperature and high pressure water[J]. Acta Metall. Sin., 2011, 47: 847
5 郦晓慧, 黄 发, 王俭秋 等. TiN夹杂物对690合金管在高温高压水中的腐蚀和应力腐蚀行为的影响[J]. 金属学报, 2011, 47: 847
6 Stearns C A, Kohl F J, Fryburg G C. Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000oC to 1300oC[J]. J. Electrochem. Soc., 1974, 121: 945
doi: 10.1149/1.2401958
7 Berthod P. Kinetics of high temperature oxidation and chromia volatilization for a binary Ni-Cr alloy[J]. Oxid. Met., 2005, 64: 235
doi: 10.1007/s11085-005-6562-8
8 Zheng L, Zhang M C, Chellali R, et al. Investigations on the growing, cracking and spalling of oxides scales of powder metallurgy Rene95 nickel-based superalloy[J]. Appl. Surf. Sci., 2011, 257: 9762
doi: 10.1016/j.apsusc.2011.06.005
9 Wang Z M, Grosseau-Poussard J L, Geandier G, et al. Stress distribution in depth of NiCr + Cr2O3 systems using high-energy synchrotron X-rays in transmission mode[J]. J. Alloys Compd., 2021, 875: 159958
doi: 10.1016/j.jallcom.2021.159958
10 Wongpromrat P, Galerie A, Thublaor T, et al. Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy[J]. Corros. Sci., 2022, 202: 110285
doi: 10.1016/j.corsci.2022.110285
11 Tawancy H M. Enhancing the oxidation performance of wrought Ni-base superalloy by minor additions of active elements[J]. J. Mater. Eng. Perform., 2016, 25: 5231
doi: 10.1007/s11665-016-2391-y
12 Li Y P, Tunthawiroon P, Tang N, et al. Effects of Al, Ti, and Zr doping on oxide film formation in Co-29Cr-6Mo alloy used as mould material for Al die-casting[J]. Corros. Sci., 2014, 84: 147
doi: 10.1016/j.corsci.2014.03.020
13 Zeng Y X, Guo X P, Qiao Y Q, et al. Effect of Zr addition on microstructure and oxidation resistance of Nb-Ti-Si base ultrahigh-temperature alloys[J]. Acta Metall. Sin., 2015, 51: 1049
doi: 10.11900/0412.1961.2015.00092
13 曾宇翔, 郭喜平, 乔彦强 等. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51: 1049
14 Yang Z, Lu J T, Yang Z, et al. Oxidation behavior of a new wrought Ni-30Fe-20Cr based alloy at 750oC in pure steam and the effects of alloyed yttrium[J]. Corros. Sci., 2017, 125: 106
doi: 10.1016/j.corsci.2017.06.009
15 Liu H, Li Y P, Zhang C L, et al. Effects of aluminum diffusion on the adhesive behavior of the Ni(111)/Cr2O3(0001) interface: First principle study[J]. Comput. Mater. Sci., 2013, 78: 116
doi: 10.1016/j.commatsci.2013.05.037
16 Dong N, Zhang C L, Liu H, et al. Effects of different alloying additives X (X = Si, Al, V, Ti, Mo, W, Nb, Y) on the adhesive behavior of Fe/Cr2O3 interfaces: A first-principles study[J]. Comput. Mater. Sci., 2015, 109: 293
doi: 10.1016/j.commatsci.2015.07.031
17 Vayyala A, Povstugar I, Naumenko D, et al. A nanoscale study of thermally grown chromia on high-Cr ferritic steels and associated oxidation mechanisms[J]. J. Electrochem. Soc., 2020, 167: 061502
18 Teng J W, Gong X J, Yang B B, et al. Influence of Ti addition on oxidation behavior of Ni-Cr-W-based superalloys[J]. Corros. Sci., 2021, 193: 109882
doi: 10.1016/j.corsci.2021.109882
19 Ye X J, Yang B B, Nie Y, et al. Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy[J]. Corros. Sci., 2021, 185: 109436
doi: 10.1016/j.corsci.2021.109436
20 Ding Z Y, Cao B X, Luan J H, et al. Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys[J]. Corros. Sci., 2021, 184: 109365
doi: 10.1016/j.corsci.2021.109365
21 Teng J W, Gong X J, Yang B B, et al. High temperature oxidation behavior of a novel Ni-Cr-W-Al-Ti superalloy[J]. Corros. Sci., 2022, 198: 110141
doi: 10.1016/j.corsci.2022.110141
22 Li Q, Zhou B X. A study of microstructure of alloy 690[J]. Acta Metall. Sin., 2001, 37: 8
22 李 强, 周邦新. 690合金的显微组织研究[J]. 金属学报, 2001, 37: 8
23 Li H, Xia S, Zhou B X, et al. Study of carbide precipitation at grain boundary in nickel base alloy 690[J]. Acta Metall. Sin., 2011, 47: 853
23 李 慧, 夏 爽, 周邦新 等. 镍基690合金中晶界碳化物析出的研究[J]. 金属学报, 2011, 47: 853
24 Feng H, Song Z G, Zheng W J, et al. Thermodynamic calculation and experimental analysis on equilibrium phases in nickel base alloy Inconel 690[J]. Spec. Steel, 2008, 29: 13
24 丰 涵, 宋志刚, 郑文杰 等. Inconel 690镍基合金平衡相的热力学计算和实验分析[J]. 特殊钢, 2008, 29: 13
25 Ren J, Yu L M, Liu C X, et al. Effects of Al addition on high temperature oxidation behavior of 16Cr ODS steel[J]. Corros. Sci., 2022, 195: 110008
doi: 10.1016/j.corsci.2021.110008
26 Nowotny J, Weppner W. Non-Stoichiometric Compounds: Surfaces, Grain Boundaries and Structural Defects[M]. Dordrecht: Kluwer Academic Publishers, 1989: 93
27 Lapington M T, Crudden D J, Reed R C, et al. Characterization of oxidation mechanisms in a family of polycrystalline chromia-forming nickel-base superalloys[J]. Acta Mater., 2021, 206: 116626
doi: 10.1016/j.actamat.2021.116626
28 Moya E G, Moya F, Sami A, et al. Diffusion of chromium in alumina single crystals[J]. Philos. Mag., 1995, 72A: 861
29 Seltzer M S, Wilcox B A. Diffusion of chromium and aluminum in Ni-20Cr and TDNiCr (Ni-20Cr-2ThO2)[J]. Metall. Trans., 1972, 3: 2357
30 Chen T F, Iijima Y, Hirano K I, et al. Diffusion of chromium in nickel-base Ni-Cr-Fe alloys[J]. J. Nucl. Mater., 1989, 169: 285
doi: 10.1016/0022-3115(89)90546-1
31 Chyrkin A, Gunduz K O, Fedorova I, et al. High-temperature oxidation behavior of additively manufactured IN625: Effect of microstructure and grain size[J]. Corros. Sci., 2022, 205: 110382
doi: 10.1016/j.corsci.2022.110382
32 Bataillou L, Desgranges C, Martinelli L, et al. Modelling of the effect of grain boundary diffusion on the oxidation of Ni-Cr alloys at high temperature[J]. Corros. Sci., 2018, 136: 148
doi: 10.1016/j.corsci.2018.03.001
33 Chen T F, Tiwari G P, Iijima Y, et al. Volume and grain boundary diffusion of chromium in Ni-base Ni-Cr-Fe alloys[J]. Mater. Trans., 2003, 44: 40
doi: 10.2320/matertrans.44.40
34 Pilling N, Bedworth R J. The oxidation of metals at high temperatures[J]. Inst. Met., 1923, 29: 529
35 Xu C H, Gao W. Pilling-Bedworth ratio for oxidation of alloys[J]. Mater. Res. Innovations, 2000, 3: 231
doi: 10.1007/s100190050008
36 Zhang Y, Fu H D, Zhou F J, et al. Revealing the effect of Al content on the oxidation of γ'-strengthened cobalt-based superalloys[J]. Corros. Sci., 2022, 198: 110122
doi: 10.1016/j.corsci.2022.110122
37 Bricknell R H, Woodford D A. The mechanism of cavity formation during high temperature oxidation of nickel[J]. Acta Metall., 1982, 30: 257
doi: 10.1016/0001-6160(82)90064-5
38 Kumar A, Nasrallah M, Douglass D L. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys[J]. Oxid. Met., 1974, 8: 227
doi: 10.1007/BF00604042
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[5] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[8] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[10] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[11] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[12] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[13] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[14] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[15] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.