Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1262-1272    DOI: 10.11900/0412.1961.2018.00022
  本期目录 | 过刊浏览 |
闵小华1(), 向力1, 李明佳1, 姚凯1, 江村聪2, 程从前1, 土谷浩一2
1 大连理工大学材料科学与工程学院 大连 116024
2 Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-004, Japan
Effect of {332}<113> Twins Combined with Isothermal ω-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents
Xiaohua MIN1(), Li XIANG1, Mingjia LI1, Kai YAO1, Satoshi EMURA2, Congqian CHENG1, Koichi TSUCHIYA2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-004, Japan
全文: PDF(5221 KB)   HTML

利用OM、XRD、TEM、DSC、Vickers硬度计和拉伸试验机等研究了拉伸预变形诱发{332}<113>孪晶与随后时效析出等温ω相对不同O含量(0.1%~0.5%,质量分数) β型Ti-15Mo合金力学性能的影响。结果表明,随着合金中O含量的增加,机械孪晶的形成以及等温ω相的析出受到了抑制,且拉伸预变形诱发孪晶对等温ω相析出的影响较小。经拉伸预变形和随后时效处理,低O含量合金呈现出较高的屈服强度和较好的均匀伸长率,而高O含量合金发生脆性断裂。孪生与位错滑移的耦合塑性变形使得低O含量合金呈现出良好的强度和塑性匹配,其高的屈服强度主要受位错滑移主导,良好的均匀伸长率主要归因于预变形诱发孪晶的静态晶粒细化以及后续孪生变形导致的动态晶粒细化效应。这些结果表明,通过对合金元素O的有效利用,以及合理的预变形与热处理制度,能够改变塑性变形方式和相析出行为,从而在较大范围内调控β型钛合金的强度和塑性匹配。

关键词 β型钛合金;O含量{332}<113>孪晶;等温ω相;力学性能    

β-type alloys have a wide application prospect in aerospace, biomedical and marine engineering and other fields, owing to their high specific strength, good corrosion resistance and low elastic modulus. Their yield strength and uniform elongation are affected by the second phase precipitation, plastic deformation mode and interstitial element, especially the oxygen element. In this work, the effect of tensile pre-deformation induced {332}<113> twins combined with isothermal ω-phase after subsequent ageing on the mechanical properties of β-type Ti-15Mo alloy with different oxygen contents from 0.1% to 0.5% (mass fraction) was examined by OM, XRD, TEM and DSC, Vickers hardness tester and tensile testing machine. The results indicated that with increasing the oxygen content, the formation of mechanical twins and isothermal ω-phase in the alloy was suppressed, and the effect of pre-deformation induced twins on the precipitation of isothermal ω-phase was negligible. After pre-deformation combined with subsequent ageing, the alloy with low oxygen content had the relatively high yield strength and large uniform elongation, but it with high oxygen content exhibited the brittle fracture. A good combination of strength with ductility in the alloy with low oxygen content was contributed to the twinning and dislocation slip coupled deformation. The high yield strength was mainly dominated by the dislocation slip, and the large uniform elongation was due to the static and dynamic grain refinement effects, which were caused by the pre-deformation induced twins and subsequent twinning deformation, respectively. Through utilizing the alloying element of oxygen effectively, and changing the plastic deformation mode and phase precipitation behavior based on the reasonable process of pre-deformation and heat treatment, the combination of strength and ductility can be controlled in a large range for the β-type titanium alloys.

Key wordsβ-type titanium alloy;    oxygen content    {332}<113> twin;    isothermal ω-phase;    mechanical property
收稿日期: 2018-01-15     
ZTFLH:  TG146.2  

作者简介 闵小华,男,1974年生,教授,博士


闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
Xiaohua MIN, Li XIANG, Mingjia LI, Kai YAO, Satoshi EMURA, Congqian CHENG, Koichi TSUCHIYA. Effect of {332}<113> Twins Combined with Isothermal ω-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents. Acta Metall Sin, 2018, 54(9): 1262-1272.

链接本文:      或

图1  0.1O、0.2O和0.4O合金ST 以及STDA 试样的OM像
图2  0.1O、0.2O和0.4O合金ST、STA、STD以及STDA试样的XRD谱
图3  不同O含量Ti-15Mo合金ST、STA、 STD以及STDA试样的β相晶格常数和Vickers硬度
图4  不同O含量Ti-15Mo合金的名义应力-应变曲线
图5  0.1O和0.2O合金ST、STA以及STDA试样的真应力-真应变与加工硬化率曲线
图6  0.1O和0.2O合金STDA试样5%拉伸变形后的OM像
图7  不同O含量Ti-15Mo合金STDA试样变形前和5%拉伸变形后的{332}<113>孪晶面积分数
图8  0.1O合金ST试样的SAED谱、不同O含量Ti-15Mo合金ST试样的衍射斑点强度以及各试样SAED谱中d(0002)ω*/d(222)β*
图9  不同O含量Ti-15Mo合金STA试样的SAED谱及TEM暗场像
图10  不同O含量Ti-15Mo合金ST试样在不同升温速率条件下的DSC曲线
图11  不同O含量Ti-15Mo合金的β相到ω相转变的激活能
图12  0.1O、0.2O和0.4O合金STDA试样5%拉伸变形前后的原位OM像
[1] Boyer R R, Briggs R D.The use of β titanium alloys in the aerospace industry[J]. J. Mater. Eng. Perform., 2005, 6: 681
[2] Boyer R R.Titanium for aerospace: Rationale and applications[J]. Adv. Perform. Mater., 1995, 2: 349
[3] Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[4] Kolli R P, Joost W J, Ankem S.Phase stability and stress-induced transformations in beta titanium alloys[J]. JOM, 2015, 67: 1273
[5] Banerjee D, Williams J C.Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
[6] Min X H, Emura S, Nishimura T, et al.Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys[J]. Mater. Sci. Eng., 2010, A527: 5499
[7] Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[8] Hanada S, Izumi O.Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys[J]. Metall. Mater. Trans., 1987, 18A: 265
[9] Ahmed M, Wexler D, Casillas G, et al.The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy[J]. Acta Mater., 2015, 84: 124
[10] Bowen A W.Omega phase embrittlement in aged Ti-15%Mo[J]. Scr. Metall., 1971, 5: 709
[11] Min X H, Emura S, Zhang L, et al.Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase[J]. Mater. Sci. Eng., 2015, A646: 279
[12] Takemoto Y, Shimizu I, Sakakibara A, et al.Tensile behavior and cold workability of Ti-Mo alloys[J]. Mater. Trans., 2004, 45: 1571
[13] Min X H, Emura S, Sekido N, et al.Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy[J]. Mater. Sci. Eng., 2010, A527: 2693
[14] Neelakantan S, Galindo-Nava E I, Martin D S, et al. Modelling and design of stress-induced martensite formation in metastable β Ti alloys[J]. Mater. Sci. Eng., 2014, A590: 140
[15] Hanada S, Izumi O.Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metall. Trans., 1986, 17A: 1409
[16] Marteleur M, Sun F, Gloriant T, et al.On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects[J]. Scr. Mater., 2012, 66: 749
[17] Han H N, Oh C S, Kim G, et al.Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation[J]. Mater. Sci. Eng., 2009, A499: 462
[18] Steinmetz D R, J?pel T, Wietbrock B, et al.Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments[J]. Acta Mater., 2013, 61: 494
[19] Jeong K, Jin J E, Jung Y S, et al.The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Mater., 2013, 61: 3399
[20] Mahato B, Shee S K, Sahu T, et al.An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe-Mn-Si-Al twinning-induced plasticity steel[J]. Acta Mater., 2015, 86: 69
[21] Zhang H K, Zhang Z J, Zhang Z F.Comparison of twinning evolution with work hardening ability in twinning-induced plasticity steel under different strain rates[J]. Mater. Sci. Eng., 2015, A622: 184
[22] He B B, Luo H W, Huang M X.Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects[J]. Int. J. Plast., 2016, 78: 173
[23] Min X H, Emura S, Nishimura T, et al.Effects of α phase precipitation on crevice corrosion and tensile strength in Ti-15Mo alloy[J]. Mater. Sci. Eng., 2010, A527: 1480
[24] Min X H, Tsuzaki K, Emura S, et al.Enhanced uniform elongation by pre-straining with deformation twinning in high-strength β-titanium alloys with an isothermal ω-phase[J]. Philos. Mag. Lett., 2012, 92: 726
[25] Min X H, Emura S, Meng F, et al.Mechanical twinning and dislocation slip multilayered deformation microstructures in β-type Ti-Mo base alloy[J]. Scr. Mater., 2015, 102: 79
[26] Xiang L, Min X H, Ji X, et al.Effect of pre-cold rolling-induced twins and subsequent precipitated ω-phase on mechanical properties in a β-type Ti-Mo alloy[J]. Acta. Metall. Sin.(Engl. Lett.), 2018, 31: 604
[27] Niinomo M, Nakai M, Hendrickson M, et al.Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy[J]. Scr. Mater., 2016, 123: 144
[28] Kim J, Kim H Y, Hosoda H, et al.Shape memory behavior of Ti-22Nb-(0.5-2.0)O (at%) biomedical alloys[J]. Mater. Trans., 2005, 46: 852
[29] Hanada S, Takemura A, Izumi O.The mode of plastic deformation of β Ti-V alloys[J]. Trans. Jpn. Inst. Met., 1982, 23: 507
[30] Furuta T, Kuramoto S, Rong C, et al.Effect of oxygen on phase stability and elastic deformation behavior in gum metal[J]. J. Jpn. Inst. Met., 2006, 70: 579
[31] Yin F X, Iwasaki S, Ping D H, et al.Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution[J]. Adv. Mater., 2006, 18: 1541
[32] Min X H, Emura S, Tsuchiya K, et al.Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition[J]. Mater. Sci. Eng., 2014, A590: 88
[33] Williams J C, Hickman B S, Leslie D H.The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys[J]. Metall. Trans., 1971, 2: 477
[34] Duan H P, Xu H X, Su W H, et al.Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy[J]. Int. J. Miner. Metall. Mater., 2012, 19: 1128
[35] Min X H, Bai P F, Emura S, et al.Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy[J]. Mater. Sci. Eng., 2017, A684: 534
[36] Wang K, Liang Q H, Zhou K, et al.Determination of oxygen in titanium-molybdenum alloy by inert gas fusion-infrared absorption method[J]. Metall. Anal., 2015, 35: 61
[37] Tsuji N, Ito Y, Saito Y, et al.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J]. Scr. Mater., 2002, 47: 893
[38] Takata N, Ohtake Y, Kita K, et al.Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates[J]. Scr. Mater., 2009, 60: 590
[39] Collings E W, Ho J C.Solute-induced lattice stability as it relates to superconductivity in titanium-molybdenum alloys[J]. Solid State Commun., 1976, 18: 1493
[40] Abdel-Hady M, Hinoshita K, Morinaga M.General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters[J]. Scr. Mater., 2006, 55: 477
[41] Abdel-Hady M, Fuwa H, Hinoshita K, et al.Phase stability change with Zr content in β-type Ti-Nb alloys[J]. Scr. Mater., 2007, 57: 1000
[42] Hanada S, Izumi O.Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metall. Trans., 1986, 17A: 1409
[43] Crocker A G.Twinned martensite[J]. Acta Metall., 1962, 10: 113
[44] Tobe H, Kim H Y, Inamura T, et al.Origin of {332} twinning in metastable β-Ti alloys[J]. Acta Mater., 2014, 64: 345
[45] Kawabata T, Kawasaki S, Izumi O.Mechanical properties of TiNbTa single crystals at cryogenic temperatures[J]. Acta Mater., 1998, 46: 2705
[46] Litvinov V S, Rusakov G M.Twinning on the {332}<11$\bar{3}$> system in unstable β titanium alloys[J]. Phys. Met. Metall., 2000, 90: 96
[47] Takemoto Y, Hida M, Sakakibara A.Martensitic {332}<113> twin in β type Ti-Mo alloy[J]. J. Jpn. Inst. Met., 1996, 60: 1072
[48] Lai M J, Tasan C C, Raabe D.On the mechanism of {332} twinning in metastable β titanium alloys[J]. Acta Mater., 2016, 111: 173
[49] Williams J C, De Fontaine D, Paton N E.The ω-phase as an example of an unusual shear transformation[J]. Metall. Trans., 1973, 4: 2701
[50] Liu H H, Niinomi M, Nakai M, et al.Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for spinal fixation devices[J]. Acta Biomater., 2015, 12: 352
[51] Niu J G, Ping D H, Ohno T, et al.Suppression effect of oxygen on the β to ω transformation in a β-type Ti alloy: Insights from first-principles[J]. Model. Simul. Mater. Sci. Eng., 2014, 22: 015007
[52] Kissinger H E.Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
[53] Hanada S, Ozeki M, Izumi O.Deformation characteristics in β phase Ti-Nb alloys[J]. Metall. Trans., 1985, 16A: 789
[54] Banerjee S, Naik U M.Plastic instability in an omega forming Ti-15%Mo alloy[J]. Acta Mater., 1996, 44: 3667
[55] Dini G, Ueji R, Najafizadeh A, et al.Flow stress analysis of TWIP steel via the XRD measurement of dislocation density[J]. Mater. Sci. Eng., 2010, A527: 2759
[56] Idrissi H, Renard K, Schryvers D, et al.On the relationship between the twin internal structure and the work-hardening rate of TWIP steels[J]. Scr. Mater., 2010, 63: 961
[57] Allain S, Chateau J P, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J]. Mater. Sci. Eng., 2004, A387-389: 143
[58] Rusakov G M, Litvinov A V, Litvinov V S.Deformation twinning of titanium β alloys of transition class[J]. Met. Sci. Heat Treat., 2006, 48: 244
[59] Zhou X Y, Min X H, Emura S, et al.Accommodative {332}<113> primary and secondary twinning in a slightly deformed β-type Ti-Mo titanium alloy[J]. Mater. Sci. Eng., 2017, A684: 456
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.