|
|
单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为 |
李小琳1(), 刘林锡1, 李雅婷1, 杨佳伟1, 邓想涛2, 王海丰1 |
1.西北工业大学 凝固技术国家重点实验室及先进润滑与密封材料研究中心 西安 710072 2.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 |
|
Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel |
LI Xiaolin1(), LIU Linxi1, LI Yating1, YANG Jiawei1, DENG Xiangtao2, WANG Haifeng1 |
1.State Key Laboratory of Solidification Processing & Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, China 2.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
Xiaolin LI,
Linxi LIU,
Yating LI,
Jiawei YANG,
Xiangtao DENG,
Haifeng WANG.
Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. Acta Metall Sin, 2022, 58(9): 1199-1207.
1 |
Fedoseeva A, Dudova N, Kaibyshev R. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel [J]. Mater. Sci. Eng., 2016, A654: 1
|
2 |
Tkachev E, Belyakov A, Kaibyshev R. Creep behavior and microstructural evolution of a 9%Cr steel with high B and low N contents [J]. Mater. Sci. Eng., 2018, A725: 228
|
3 |
Xu Y T, Li W, Wang M J, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging [J]. Acta Mater., 2019, 175: 148
doi: 10.1016/j.actamat.2019.06.012
|
4 |
Lee K H, Suh J Y, Hong S M, et al. Microstructural evolution and creep-rupture life estimation of high-Cr martensitic heat-resistant steels [J]. Mater. Charact., 2015, 106: 266
doi: 10.1016/j.matchar.2015.06.005
|
5 |
Abe F, Ohba T, Miyazaki H, et al. Effect of W-Mo balance and boron nitrides on creep rupture ductility of 9Cr steel [J]. Mater. High Temp., 2019, 36: 368
doi: 10.1080/09603409.2019.1574369
|
6 |
Abe F. Creep deformation behaviour and its effect on creep life and rupture ductility of W-Mo-balanced 9Cr steels [J]. Mater. High Temp., 2020, 37: 165
doi: 10.1080/09603409.2020.1735208
|
7 |
Yang K, Liang Y, Yan W, et al. Preferential distribution of boron and its effect on microstructure and mechanical properties of (9~12)%Cr martensitic heat resistant steels [J]. Acta Metall. Sin., 2020, 56: 53
|
7 |
杨 柯, 梁 烨, 严 伟 等. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响 [J]. 金属学报, 2020, 56: 53
|
8 |
Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels [J]. Acta Mater., 2014, 81: 230
doi: 10.1016/j.actamat.2014.08.008
|
9 |
Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
doi: 10.1016/j.actamat.2015.01.027
|
10 |
Lu Q, Xu W, van der Zwaag S. The computational design of W and co-containing creep-resistant steels with barely coarsening laves phase and M23C6 as the strengthening precipitates [J]. Metall. Mater. Trans., 2014, 45A: 6067
|
11 |
Liu F, Rashidi M, Johansson L, et al. A new 12% chromium steel strengthened by Z-phase precipitates [J]. Scr. Mater., 2016, 113: 93
doi: 10.1016/j.scriptamat.2015.10.030
|
12 |
Rashidi M, Golpayegani A, Sheikh S, et al. Mechanistic insights into the transformation processes in Z-phase strengthened 12% Cr steels [J]. Mater. Des., 2018, 158: 237
doi: 10.1016/j.matdes.2018.08.006
|
13 |
Cipolla L, Danielsen H K, Venditti D, et al. Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel [J]. Acta Mater., 2010, 58: 669
doi: 10.1016/j.actamat.2009.09.045
|
14 |
Rashidi M, Johansson L, Andrén H O, et al. Microstructure and mechanical properties of two Z-phase strengthened 12%Cr martensitic steels: The effects of Cu and C [J]. Mater. Sci. Eng., 2017, A694: 57
|
15 |
Danielsen H K, Di Nunzio P E, Hald J. Kinetics of Z-Phase precipitation in 9 to 12 pct Cr steels [J]. Metall. Mater. Trans., 2013, 44A: 2445
|
16 |
Rashidi M, Odqvist J, Johansson L, et al. Experimental and theoretical investigation of precipitate coarsening rate in Z-phase strengthened steels [J]. Materialia, 2018, 4: 247
doi: 10.1016/j.mtla.2018.09.024
|
17 |
Liu Z, Liu Z D, Wang X T, et al. Evolution of the microstructure in aged G115 steels with the different concentration of tungsten [J]. Mater. Sci. Eng., 2018, A729: 161
|
18 |
Xiao B, Xu L Y, Tang Z X, et al. A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep [J]. Mater. Sci. Eng., 2019, A747: 161
|
19 |
Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions [J]. Nature, 2003, 424: 294
doi: 10.1038/nature01740
|
20 |
Zhao J F, Gong J D, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels [J]. Acta Mater., 2018, 149: 19
doi: 10.1016/j.actamat.2018.02.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|