Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1199-1207    DOI: 10.11900/0412.1961.2021.00432
  研究论文 本期目录 | 过刊浏览 |
单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为
李小琳1(), 刘林锡1, 李雅婷1, 杨佳伟1, 邓想涛2, 王海丰1
1.西北工业大学 凝固技术国家重点实验室及先进润滑与密封材料研究中心 西安 710072
2.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel
LI Xiaolin1(), LIU Linxi1, LI Yating1, YANG Jiawei1, DENG Xiangtao2, WANG Haifeng1
1.State Key Laboratory of Solidification Processing & Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, China
2.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
Xiaolin LI, Linxi LIU, Yating LI, Jiawei YANG, Xiangtao DENG, Haifeng WANG. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. Acta Metall Sin, 2022, 58(9): 1199-1207.

全文: PDF(3132 KB)   HTML
摘要: 

利用Thermo-Calc软件计算与实验相结合的方法设计出一种在长时服役过程中仅存在MX相的马氏体耐热钢,成分为Fe-0.03C-10Cr-0.2Zr-0.3V,其室温屈服强度、抗拉强度和断裂延伸率分别为266 MPa、413 MPa和38%。经轧制+正火处理的Fe-0.03C-10Cr-0.2Zr-0.3V钢在700℃时效1、10、100和1000 h后,进行高温硬度检测,结果表明,随着时效时间的延长,马氏体耐热钢在700℃的高温硬度保持稳定。对时效不同时间的钢中析出相进行TEM表征,发现随着时效时间的延长(1~1000 h),析出相的平均尺寸从10.8 nm增加至17.8 nm。时效1000 h时,MX相的成分为Zr0.46Nb0.14C0.4,体积分数为0.29%。根据蠕变实验结果分析,其在650和700℃的门槛应力分别为54.5和28.4 MPa。

关键词 马氏体耐热钢MX型析出相蠕变行为门槛应力CALPHAD技术    
Abstract

There has been a push in the past few decades to increase the operating temperature of steam generators to the ultra-supercritical (USC) regime. This requires that creep-resistant alloys can operate at 650-700°C for 30 years. P91 and P92 steels are commercially applied in USC steam generator applications. However, these steels fail due to the coarsening of M23C6 and Laves phases during long-term service. Therefore, it is significant to restrict the formation of easily coarsened precipitates. In this study, a martensitic heat-resistant steel strengthened by single MX precipitates is designed using the Thermo-Calc software, as Fe-0.03C-10Cr-0.2Zr-0.3V. The yield strength, tensile strength, and elongation at room temperature are 266 MPa, 413 MPa, and 38%, respectively. The high-temperature hardnesses of specimens aged at 700oC for 1, 10, 100, and 1000 h were tested at 700oC after normalizing treatment, which illustrates that the high-temperature hardness of the specimens remains stable with increased aging time. In addition, TEM was used to characterize the precipitates in the heat-resistant steel aged for different times. It is found that with the increase of aging time (1-1000 h), the average size of the precipitates increases from 10.8 to 17.8 nm. The composition of MX precipitates in the specimens aged for 1000 h is Zr0.46Nb0.14C0.4 and the volume fraction is 0.29%. According to the creep test results, the threshold stresses at 650 and 700oC are 54.5 and 28.4 MPa, respectively.

Key wordsmartensite heat-resistant steel    MX-type precipitate    creep behavior    threshold stress    CALPHAD technique
收稿日期: 2021-10-15     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(52004224);博士后面上基金项目(2020M683559)
作者简介: 李小琳,女,1990年生,副教授,博士
图1  传统马氏体耐热钢(P91和T合金)相图
图2  成分设计流程图及筛选过程示意图
图3  目标成分合金的相图和性质图
图4  经HR + N处理的Fe-0.03C-10Cr-0.2Zr-0.3V钢在700℃时效1 h的OM和TEM像
图5  析出相形貌及尺寸分布图
图6  经HR + N处理后Fe-0.03C-10Cr-0.2Zr-0.3V钢在700℃时效1000 h所得析出相的成分分析
MethodAtomic fractionMass fraction
ZrNbCZrNbC
TEM-EDS analysis0.460.140.400.710.210.08
Thermo-Calc prediction0.420.0930.490.7230.1650.112
表1  经HR + N处理后Fe-0.03C-10Cr-0.2Zr-0.3V钢在700℃时效1000 h所得析出相的成分 (%)
图7  经HR + N处理后Fe-0.03C-10Cr-0.2Zr-0.3V钢在700℃时效1000 h后析出相的HRTEM像、FFT谱及IFFT谱
图8  Fe-0.03C-10Cr-0.2Zr-0.3V钢在700℃时效不同时间后在700℃的高温硬度
图9  Fe-0.03C-10Cr-0.2Zr-0.3V钢的蠕变性能
1 Fedoseeva A, Dudova N, Kaibyshev R. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel [J]. Mater. Sci. Eng., 2016, A654: 1
2 Tkachev E, Belyakov A, Kaibyshev R. Creep behavior and microstructural evolution of a 9%Cr steel with high B and low N contents [J]. Mater. Sci. Eng., 2018, A725: 228
3 Xu Y T, Li W, Wang M J, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging [J]. Acta Mater., 2019, 175: 148
doi: 10.1016/j.actamat.2019.06.012
4 Lee K H, Suh J Y, Hong S M, et al. Microstructural evolution and creep-rupture life estimation of high-Cr martensitic heat-resistant steels [J]. Mater. Charact., 2015, 106: 266
doi: 10.1016/j.matchar.2015.06.005
5 Abe F, Ohba T, Miyazaki H, et al. Effect of W-Mo balance and boron nitrides on creep rupture ductility of 9Cr steel [J]. Mater. High Temp., 2019, 36: 368
doi: 10.1080/09603409.2019.1574369
6 Abe F. Creep deformation behaviour and its effect on creep life and rupture ductility of W-Mo-balanced 9Cr steels [J]. Mater. High Temp., 2020, 37: 165
doi: 10.1080/09603409.2020.1735208
7 Yang K, Liang Y, Yan W, et al. Preferential distribution of boron and its effect on microstructure and mechanical properties of (9~12)%Cr martensitic heat resistant steels [J]. Acta Metall. Sin., 2020, 56: 53
7 杨 柯, 梁 烨, 严 伟 等. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响 [J]. 金属学报, 2020, 56: 53
8 Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels [J]. Acta Mater., 2014, 81: 230
doi: 10.1016/j.actamat.2014.08.008
9 Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
doi: 10.1016/j.actamat.2015.01.027
10 Lu Q, Xu W, van der Zwaag S. The computational design of W and co-containing creep-resistant steels with barely coarsening laves phase and M23C6 as the strengthening precipitates [J]. Metall. Mater. Trans., 2014, 45A: 6067
11 Liu F, Rashidi M, Johansson L, et al. A new 12% chromium steel strengthened by Z-phase precipitates [J]. Scr. Mater., 2016, 113: 93
doi: 10.1016/j.scriptamat.2015.10.030
12 Rashidi M, Golpayegani A, Sheikh S, et al. Mechanistic insights into the transformation processes in Z-phase strengthened 12% Cr steels [J]. Mater. Des., 2018, 158: 237
doi: 10.1016/j.matdes.2018.08.006
13 Cipolla L, Danielsen H K, Venditti D, et al. Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel [J]. Acta Mater., 2010, 58: 669
doi: 10.1016/j.actamat.2009.09.045
14 Rashidi M, Johansson L, Andrén H O, et al. Microstructure and mechanical properties of two Z-phase strengthened 12%Cr martensitic steels: The effects of Cu and C [J]. Mater. Sci. Eng., 2017, A694: 57
15 Danielsen H K, Di Nunzio P E, Hald J. Kinetics of Z-Phase precipitation in 9 to 12 pct Cr steels [J]. Metall. Mater. Trans., 2013, 44A: 2445
16 Rashidi M, Odqvist J, Johansson L, et al. Experimental and theoretical investigation of precipitate coarsening rate in Z-phase strengthened steels [J]. Materialia, 2018, 4: 247
doi: 10.1016/j.mtla.2018.09.024
17 Liu Z, Liu Z D, Wang X T, et al. Evolution of the microstructure in aged G115 steels with the different concentration of tungsten [J]. Mater. Sci. Eng., 2018, A729: 161
18 Xiao B, Xu L Y, Tang Z X, et al. A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep [J]. Mater. Sci. Eng., 2019, A747: 161
19 Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions [J]. Nature, 2003, 424: 294
doi: 10.1038/nature01740
20 Zhao J F, Gong J D, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels [J]. Acta Mater., 2018, 149: 19
doi: 10.1016/j.actamat.2018.02.001
[1] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[2] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[3] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[4] 徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
[5] 钟祥玉 吴欣强 韩恩厚. 核级不锈钢和铁素体-马氏体耐热钢在400℃/25 MPa超临界水中的腐蚀行为[J]. 金属学报, 2011, 47(7): 932-938.
[6] 张建强; 张国栋; 何洁; 章应霖; 张富巨 . 马氏体/贝氏体耐热钢焊接接头的界面蠕变损伤行为[J]. 金属学报, 2007, 43(12): 1275-1281 .
[7] 王毅; 褚武扬; 宿彦京; 高克玮; 刘辉; 乔利杰 . PZT压电陶瓷的应力腐蚀[J]. 金属学报, 2003, 39(2): 182-184 .
[8] 任维丽; 郭建亭; 周继扬 . 两相共晶NiAl-9Mo合金的蠕变行为[J]. 金属学报, 2002, 38(9): 908-913 .
[9] 张涛; 姚远; 褚武扬; 乔利杰 . 管线钢氢致附加应力与氢致门槛应力的相关性[J]. 金属学报, 2002, 38(8): 844-848 .
[10] 李金许; 李红旗; 王燕斌; 乔利杰; 褚武扬 . Ni3Al+NiAl双相合金的氢致开裂[J]. 金属学报, 2001, 37(10): 1049-1052 .
[11] 褚武扬;吕荣邦;乔利杰;王燕斌;程以环;陈红星;关永生;阎应龙;孙炜. 油井管钢氢致开裂门槛值研究[J]. 金属学报, 1998, 34(10): 1077-1083.
[12] 陈建桥. 组合加载下碳素工具钢中疲劳小裂纹的门槛区行为特征[J]. 金属学报, 1993, 29(10): 33-39.