Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 657-667    DOI: 10.11900/0412.1961.2021.00237
  本期目录 | 过刊浏览 |
后时效对超细晶6061铝合金微观结构与力学性能的影响
刘满平1,2(), 薛周磊1, 彭振1(), 陈昱林1, 丁立鹏3,4, 贾志宏3,4
1江苏大学 材料科学与工程学院 镇江 212013
2湖南大学 汽车车身先进设计制造国家重点实验室 长沙 410082
3南京工业大学 先进轻质高性能材料研究中心 南京 211816
4重庆大学 材料科学与工程学院 重庆 400030
Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy
LIU Manping1,2(), XUE Zhoulei1, PENG Zhen1(), CHEN Yulin1, DING Lipeng3,4, JIA Zhihong3,4
1School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
3Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 211816, China
4School of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
引用本文:

刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
Manping LIU, Zhoulei XUE, Zhen PENG, Yulin CHEN, Lipeng DING, Zhihong JIA. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. Acta Metall Sin, 2023, 59(5): 657-667.

全文: PDF(3315 KB)   HTML
摘要: 

采用TEM、XRD、显微硬度实验和拉伸实验,利用等通道转角挤压(ECAP)和后时效相结合制备出超细晶6061铝合金,对其微观结构和力学性能进行了对比研究。结果表明,经过两道次ECAP后,合金的平均晶粒尺寸细化到210 nm。两道次ECAP + 80℃、20 min低温后时效,合金的平均晶粒尺寸为278 nm,基体中弥散分布细小的针状β''、L相和Q'相纳米级析出物,拉伸强度和屈服强度分别达到514和483 MPa,并保持了15.1%的均匀伸长率。ECAP在基体中引入的大量位错促进了析出相的形核,加速了时效过程中的析出动力学;ECAP低温后时效,合金的高强度和高韧性与细晶强化、位错强化和纳米析出相强化有关。基于实验结果,分析了合金ECAP和后时效过程中时效相的演变过程。

关键词 Al-Mg-Si-Cu合金超细晶低温后时效微观结构力学性能    
Abstract

Al-Mg-Si alloys are widely used in automotive body panels and parts of the engine owing to their low density, medium strength, high specific strength, good corrosion resistance and other characteristics. Currently, there are many studies on the precipitation behavior of undeformed Al-Mg-Si aluminum alloy, but there is a lack of research on the precipitation evolution and precipitation strengthening mechanism of ultra-fine grained 6061 aluminum alloy at different post-aging temperatures. In this study, the microstructure and mechanical properties of an ultrafine grain 6061 aluminum alloy produced by combining the equal channel angular pressing (ECAP) and post aging methods was comparatively evaluated via TEM, XRD, microhardness tests, and tensile tests. The results indicated that the average grain size of the alloy after two ECAP passes was refined to 210 nm. The average grain size of the alloy after the ECAP pass at 80oC and 20 min post aging was 278 nm; moreover, the fine needle β'', L phase, and Q' phase precipitates at nanoscale were dispersed in the matrix. Furthermore, the tensile and yield strengths were 514 and 483 MPa, respectively, while maintaining a remarkably uniform elongation of 15.1%. These results indicate that numerous dislocations introduced by ECAP in the matrix provide a location for the nucleation of the precipitate, which accelerates the precipitation kinetics during the post aging process. The high strength and toughness of the ECAP alloy after low temperature post aging can be attributed to the grain refinement strengthening, dislocation strengthening, and nanoprecipitation strengthening. Thus, the evolution of the aging precipitates during the ECAP and post aging alloy was analyzed.

Key wordsAl-Mg-Si-Cu alloy    ultrafine grain    low temperature post-aging    microstructure    mechanical property
收稿日期: 2021-06-02     
ZTFLH:  TG146.21  
基金资助:国家自然科学基金项目(U1710124);国家自然科学基金项目(51871035);国家自然科学基金项目(52001159);湖南大学汽车车身先进设计制造国家重点实验室开放基金项目(32115014)
作者简介: 刘满平,男,1964年生,教授,博士
图1  6061铝合金不同处理态XRD谱
StateDXRD<ε2>1/2ρ
nm%1014 m-2
ECAP at RT2100.169.19
ECAP + 80oC, 20 min2110.159.05
ECAP + 80oC, 180 min4880.112.78
ECAP + 110oC, 10 min2570.146.81
ECAP + 170oC, 5 min3950.145.12
ECAP + 170oC, 180 min7700.081.27
表1  ECAP态和ECAP后时效态合金的XRD分析
图2  不同状态6061铝合金的力学性能
图3  不同状态下超细晶6061铝合金的TEM像和晶粒尺寸分布
图4  T6态及ECAP + 80oC、20 min后时效态6061铝合金样品TEM像及β''析出相尺寸统计
图5  不同状态6061铝合金样品的HRTEM像及快速Fourier逆变换(IFFT)图
图6  不同状态下合金内部析出的演变示意图
Stateσexp / MPaσ0.2 / MPaσgs / MPaσρ / MPaσprec / MPa
ECAPed + 80oC, 20 min48347195 (20.2%)147 (31.2%)229 (48.6%)
ECAPed + 110oC, 10 min43443493 (21.4%)129 (29.7%)212 (48.8%)
ECAPed + 170oC, 5 min36537082 (22.2%)113 (30.5%)175 (47.3%)
表2  ECAP后时效合金中各强化机制对合金总强度的贡献及所占比例
State/treatmentσ0.2 / MPaUTS / MPaEf / %Ref.
6061 ECAP at RT + post-aging48351415.1This work
Al-Mg-Si-Cu rolling+aging45248710.0[10]
6061 ECAP at RT + post-aging41145017.8[13]
6061 under-aging + coldrolling + re-aging5425608.5[27]
6061 HPT at RT6057056.3[34]
6061 Friction stir processing4355052.1[35]
AA6060 HPT at RT4755256.0[36]
6061 HPT at RT6606905.5[37]
6061 HPT at RT + post-aging45548515.0[38]
6061 multi directional forging + aging4094728.9[39]
6101 hydrostatic extrusion + aging3453545.5[40]
6061 accumulative roll bonding + aging450-6.5[41]
Al-Mg-Si-Cu pre-deformation + aging4354507.1[42]
表3  国内外超细晶纳米晶6000系时效铝合金的强韧性对比[10,13,27,34~42]
图7  国内外Al-Mg-Si铝合金屈服强度-延伸率综合对比[10,13,27,34~42]
1 Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry[J]. Mater. Sci. Eng., 2000, A280: 37
2 Liu M P, Chen J, Lin Y J, et al. Microstructure, mechanical properties and wear resistance of an Al-Mg-Si alloy produced by equal channel angular pressing[J]. Prog. Nat. Sci. Mater. Int., 2020, 30: 485
doi: 10.1016/j.pnsc.2020.07.005
3 Ding L P, Jia Z H, Nie J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy[J]. Acta Mater., 2018, 145: 437
doi: 10.1016/j.actamat.2017.12.036
4 Chen J, Pan Q L, Yu X H, et al. Effect of annealing treatment on microstructure and fatigue crack growth behavior of Al-Zn-Mg-Sc-Zr alloy[J]. J. Cent. South Univ., 2018, 25: 961
doi: 10.1007/s11771-018-3797-5
5 Feng L, Pan Q L, Wei L L, et al. Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate[J]. J. Cent. South Univ., 2015, 22: 2423
doi: 10.1007/s11771-015-2769-2
6 Liu M P, Wu Z J, Yang R, et al. DSC analyses of static and dynamic precipitation of an Al-Mg-Si-Cu aluminum alloy[J]. Prog. Nat. Sci. Mater. Int., 2015, 25: 153
doi: 10.1016/j.pnsc.2015.02.004
7 Duan Z C, Chinh N Q, Xu C, et al. Developing processing routes for the equal-channel angular pressing of age-hardenable aluminum alloys[J]. Metall. Mater. Trans., 2010, 41A: 802
8 Wang B F, Sun J Y, Zou J D, et al. Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing[J]. J. Cent. South Univ., 2015, 22: 3698
doi: 10.1007/s11771-015-2912-0
9 Liu M P, Xie X F, Zhang Z Y, et al. Deformation-induced solid-state amorphization in a nanostructured Al-Mg alloy processed by high pressure torsion[J]. Mater. Sci. Forum, 2015, 817: 627
doi: 10.4028/www.scientific.net/MSF.817
10 Liu C H, Li X L, Wang S H, et al. A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys[J]. Mater. Des., 2014, 54: 144
doi: 10.1016/j.matdes.2013.08.042
11 Li K, Béché A, Song M, et al. Atomistic structure of Cu-containing β'' precipitates in an Al-Mg-Si-Cu alloy[J]. Scr. Mater., 2014, 75: 86
doi: 10.1016/j.scriptamat.2013.11.030
12 Cerri E, Leo P. Influence of severe plastic deformation on aging of Al-Mg-Si alloys[J]. Mater. Sci. Eng., 2005, A410-411: 226
13 Kim W J, Kim J K, Park T Y, et al. Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing[J]. Metall. Mater. Trans., 2002, 33A: 3155
14 Hockauf K, Meyer L W, Hockauf M, et al. Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment[J]. J. Mater. Sci., 2010, 45: 4754
doi: 10.1007/s10853-010-4544-y
15 Roven H J, Liu M P, Werenskiold J C. Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy[J]. Mater. Sci. Eng., 2008, A483-484: 54
16 Hockauf M, Meyer L W, Zillmann B, et al. Simultaneous improvement of strength and ductility of Al-Mg-Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging[J]. Mater. Sci. Eng., 2009, A503: 167
17 Liu Y F, Wang F, Cao Y, et al. Unique defect evolution during the plastic deformation of a metal matrix composite[J]. Scr. Mater., 2019, 162: 316
doi: 10.1016/j.scriptamat.2018.11.038
18 Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy[J]. Acta Mater., 2021, 203: 116455
doi: 10.1016/j.actamat.2020.10.074
19 Li P, Lin Q, Zhou Y F, et al. TEM analysis of microstructure evolution process of pure tungsten under high pressure torsion[J]. Acta Metall. Sin., 2019, 55: 521
19 李 萍, 林 泉, 周玉峰 等. 纯W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55: 521
20 Jiang J W, Liu M P, Liu Y, et al. Microstructure and mechanical properties of 6013 aluminium alloy processed by a combination of ECAP and preaging treatment[J]. Mater. Sci. Forum, 2017, 877: 437
doi: 10.4028/www.scientific.net/MSF.877
21 Jia Z H, Ding L P, Cao L F, et al. The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys[J]. Metall. Mater. Trans., 2017, 48A: 459
22 Marioara C D, Andersen S J, Røyset J, et al. Improving thermal stability in Cu-containing Al-Mg-Si alloys by precipitate optimization[J]. Metall. Mater. Trans., 2014, 45A: 2938
23 Man J, Jing L, Jie S G. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy[J]. J. Alloys Compd., 2007, 437: 146
doi: 10.1016/j.jallcom.2006.07.113
24 Liu M P, Wei J T, Li Y C, et al. Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminium alloy induced by equal channel angular pressing[J]. Chin. J. Mater. Res., 2016, 30: 721
doi: 10.11901/1005.3093.2016.105
24 刘满平, 韦江涛, 李毅超 等. 等通道转角挤压Al-Mg-Si铝合金的动态时效特性和力学性能[J]. 材料研究学报, 2016, 30: 721
doi: 10.11901/1005.3093.2016.105
25 Jiang T H, Liu M P, Xie X F, et al. Grain boundary structure of Al-Mg alloys processed by high pressure torsion[J]. Chin. J. Mater. Res., 2014, 28: 371
25 蒋婷慧, 刘满平, 谢学锋 等. 高压扭转大塑性变形Al-Mg合金中的晶界结构[J]. 材料研究学报, 2014, 28: 371
doi: 10.11901/1005.3093.2013.724
26 Dobatkin S V. On the increase of thermal stability of ultrafine grained materials obtained by severe plastic deformation[J]. Mater. Sci. Forum, 2003, 426-432: 2699
doi: 10.4028/www.scientific.net/MSF.426-432
27 Wang Z X, Li H, Miao F F, et al. Improving the strength and ductility of Al-Mg-Si-Cu alloys by a novel thermo-mechanical treatment[J]. Mater. Sci. Eng., 2014, A607: 313
28 Starink M J, Wang S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys[J]. Acta Mater., 2003, 51: 5131
doi: 10.1016/S1359-6454(03)00363-X
29 Dunstan D J, Bushby A J. Grain size dependence of the strength of metals: The Hall-Petch effect does not scale as the inverse square root of grain size[J]. Int. J. Plast., 2014, 53: 56
doi: 10.1016/j.ijplas.2013.07.004
30 Gubicza J, Chinh N Q, Krállics G, et al. Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation[J]. Curr. Appl. Phys., 2006, 6: 194
doi: 10.1016/j.cap.2005.07.039
31 Gutierrez-Urrutia I, Muñoz-Morris M A, Morris D G. Recovery of deformation substructure and coarsening of particles on annealing severely plastically deformed Al-Mg-Si alloy and analysis of strengthening mechanisms[J]. J. Mater. Res., 2006, 21: 329
doi: 10.1557/jmr.2006.0063
32 Muñoz-Morris M A, Oca C G, Morris D G. Mechanical behaviour of dilute Al-Mg alloy processed by equal channel angular pressing[J]. Scr. Mater., 2003, 48: 213
doi: 10.1016/S1359-6462(02)00501-8
33 Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress[J]. Acta Mater., 1999, 47: 293
doi: 10.1016/S1359-6454(98)00296-1
34 Moreno-Valle E C, Sabirov I, Perez-Prado M T, et al. Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures[J]. Mater. Lett., 2011, 65: 2917
doi: 10.1016/j.matlet.2011.06.057
35 Wang B B, Liu Y D, Xue P, et al. Prepration and mechanical properties of ultrafine-grained 6061 Al-alloy by friction stir process[J]. Chin. J. Mater. Res., 2021, 35: 321
35 王贝贝, 刘沿东, 薛 鹏 等. 超细晶6061铝合金的搅拌摩擦制备和性能[J]. 材料研究学报, 2021, 35: 321
36 Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion[J]. Acta Mater., 2014, 63: 169
doi: 10.1016/j.actamat.2013.10.022
37 Nurislamova G, Sauvage X, Murashkin M, et al. Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation[J]. Philos. Mag. Lett., 2008, 88: 459
doi: 10.1080/09500830802186938
38 Mohamed I F, Lee S, Edalati K, et al. Aging behavior of Al 6061 alloy processed by high-pressure torsion and subsequent aging[J]. Metall. Mater. Trans., 2015, 46A: 2664
39 Rao P N, Singh D, Brokmeier H G, et al. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy[J]. Mater. Sci. Eng., 2015, A641: 391
40 Majchrowicz K, Pakieła Z, Chrominski W, et al. Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion[J]. Mater. Charact., 2018, 135: 104
doi: 10.1016/j.matchar.2017.11.023
41 Rezaei M R, Toroghinejad M R, Ashrafizadeh F. Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy[J]. J. Mater. Process. Technol., 2011, 211: 1184
doi: 10.1016/j.jmatprotec.2011.01.023
42 Gu Y, Chen J H, Liu C H, et al. Effect of pre-deformation on age- hardening and microstructure in Al-Mg-Si-Cu alloy[J]. Acta Metall. Sin., 2015, 51: 1400
doi: 10.11900/0412.1961.2015.00113
42 顾 媛, 陈江华, 刘春辉 等. 预变形对Al-Mg-Si-Cu合金时效硬化和显微结构的影响[J]. 金属学报, 2015, 51: 1400
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.