|
|
两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为 |
赵鹏1,2, 谢光3, 段慧超1, 张健3, 杜奎1() |
1中国科学院金属研究所 沈阳材料国家研究中心 沈阳 110016 2中国科学技术大学 材料科学与工程学院 沈阳 110016 3中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys |
ZHAO Peng1,2, XIE Guang3, DUAN Huichao1, ZHANG Jian3, DU Kui1() |
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
Peng ZHAO,
Guang XIE,
Huichao DUAN,
Jian ZHANG,
Kui DU.
Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1221-1229.
1 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. New York: Cambridge University Press, 2008: 1
|
2 |
Moverare J J, Johansson S, Reed R C. Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal superalloy [J]. Acta Mater., 2009, 57: 2266
doi: 10.1016/j.actamat.2009.01.027
|
3 |
Marchionni M, Goldschmidt D, Maldini M. Evaluation of high-temperature behavior of CMSX4 + yttrium single-crystal nickel-base superalloy [J]. J. Mater. Eng. Perform., 1993, 2: 497
doi: 10.1007/BF02661732
|
4 |
Zrnik J, Wang J A, Yu Y, et al. Influence of cycling frequency on cyclic creep characteristics of nickel base single-crystal superalloy [J]. Mater. Sci. Eng., 1997, A234-236: 884
|
5 |
MacLachlan D W, Knowles D M. Fatigue behaviour and lifing of two single crystal superalloys [J]. Fatigue Fract. Eng. Mater. Struct., 2001, 24: 503
doi: 10.1046/j.1460-2695.2001.00392.x
|
6 |
Yu J J, Han G M, Chu Z K, et al. High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy [J]. Mater. Sci. Eng., 2014, A592: 164
|
7 |
Fu B D, Zhang J X, Harada H. Interaction between crack and twins in TMS-82 superalloy during thermomechanical fatigue process [J]. Prog. Nat. Sci.: Mater. Int., 2013, 23: 508
doi: 10.1016/j.pnsc.2013.09.005
|
8 |
Hong H U, Yoon J G, Choi B B, et al. Localized microtwin formation and failure during out-of-phase thermomechanical fatigue of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2014, 69: 22
doi: 10.1016/j.ijfatigue.2013.01.015
|
9 |
Kanesund J, Moverare J, Johansson S. The deformation and damage mechanisms during thermomechanical fatigue (TMF) in IN792 [J]. Procedia Eng., 2011, 10: 189
doi: 10.1016/j.proeng.2011.04.034
|
10 |
Kanesund J, Moverare J J, Johansson S. Deformation and damage mechanisms in IN792 during thermomechanical fatigue [J]. Mater. Sci. Eng., 2011, A528: 4658
|
11 |
Moverare J J, Segersäll M, Sato A, et al. Thermomechanical fatigue of single-crystal superalloys: Influence of composition and microstructure [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012:369
|
12 |
Zhang J X, Harada H, Ro Y, et al. Thermomechanical fatigue mechanism in a modern single crystal nickel base superalloy TMS-82 [J]. Acta Mater., 2008, 56: 2975
doi: 10.1016/j.actamat.2008.02.035
|
13 |
Zhang J X, Harada H, Koizumi Y, et al. Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure [J]. Scr. Mater., 2009, 61: 1105
doi: 10.1016/j.scriptamat.2009.08.036
|
14 |
Sun F, Zhang J X, Harada H. Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling [J]. Acta Mater., 2014, 67: 45
doi: 10.1016/j.actamat.2013.12.011
|
15 |
Zhang J X, Ro Y, Zhou H, et al. Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy [J]. Scr. Mater., 2006, 54: 655
doi: 10.1016/j.scriptamat.2005.10.030
|
16 |
Hong H U, Kang J G, Choi B G, et al. A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2011, 33: 1592
doi: 10.1016/j.ijfatigue.2011.07.009
|
17 |
Wardle S, Phan I, Hug G. Analysis of twin intersections in TiAl [J]. Philos. Mag., 1993, 67A: 497
|
18 |
Zhang L C, Chen G L, Ye H Q. Substructures of deformation twins and twin intersections in a Ti-45Al-8Nb-2.5 Mn alloy heavily deformed at room temperature [J]. Mater. Sci. Eng., 2001, A299: 267
|
19 |
Yang G, Ma S Y, Du K, et al. Interactions between dislocations and twins in deformed titanium aluminide crystals [J]. J. Mater. Sci. Technol., 2019, 35: 402
doi: 10.1016/j.jmst.2018.09.031
|
20 |
Zhang L C, Chen G L, Wang J G, et al. Formation of a triangular striated structure in the twin intersection area in γ-TiAl during room-temperature deformation [J]. Intermetallics, 1999, 7: 1241
doi: 10.1016/S0966-9795(99)00027-8
|
21 |
Ni S, Wang Y B, Liao X Z, et al. The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials [J]. Acta Mater., 2012, 60: 3181
doi: 10.1016/j.actamat.2012.02.026
|
22 |
Zhu Y T, Wu X L, Liao X Z, et al. Dislocation-twin interactions in nanocrystalline fcc metals [J]. Acta Mater., 2011, 59: 812
doi: 10.1016/j.actamat.2010.10.028
|
23 |
Lv X Z, Zhang J X, Harada H. Twin-dislocation and twin-twin interactions during cyclic deformation of a nickel-base single crystal TMS-82 superalloy [J]. Int. J. Fatigue, 2014, 66: 246
doi: 10.1016/j.ijfatigue.2014.04.012
|
24 |
Kontis P, Li Z M, Collins D M, et al. The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys [J]. Scr. Mater., 2018, 145: 76
doi: 10.1016/j.scriptamat.2017.10.005
|
25 |
Wu X X, Makineni S K, Kontis P, et al. On the segregation of Re at dislocations in the γ' phase of Ni-based single crystal superalloys [J]. Materialia, 2018, 4: 109
doi: 10.1016/j.mtla.2018.09.018
|
26 |
Smith T M, Rao Y, Wang Y, et al. Diffusion processes during creep at intermediate temperatures in a Ni-based superalloy [J]. Acta Mater., 2017, 141: 261
doi: 10.1016/j.actamat.2017.09.027
|
27 |
Barba D, Pedrazzini S, Vilalta-clemente A, et al. On the composition of microtwins in a single crystal nickel-based superalloy [J]. Scr. Mater., 2017, 127: 37
doi: 10.1016/j.scriptamat.2016.08.029
|
28 |
Meid C, Eggeler M, Watermeyer P, et al. Stress-induced formation of TCP phases during high temperature low cycle fatigue loading of the single-crystal Ni-base superalloy ERBO/1 [J]. Acta Mater., 2019, 168: 343
doi: 10.1016/j.actamat.2019.02.022
|
29 |
He J Y, Zenk C H, Zhou X Y, et al. On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy [J]. Acta Mater., 2020, 184: 86
doi: 10.1016/j.actamat.2019.11.035
|
30 |
Paul U, Sahm P R, Goldschmidt D. Inhomogeneities in single-crystal components [J]. Mater. Sci. Eng., 1993, A173: 49
|
31 |
Cox D C, Roebuck B, Rae C M F, et al. Recrystallisation of single crystal superalloy CMSX-4 [J]. Mater. Sci. Technol., 2003, 19: 440
doi: 10.1179/026708303225010731
|
32 |
Jo C Y, Cho H Y, Kim H M. Effect of recrystallisation on microstructural evolution and mechanical properties of single crystal nickel base superalloy CMSX-2 Part 1—Microstructural evolution during recrystallisation of single crystal [J]. Mat. Sci. Technol., 2003, 19: 1665
doi: 10.1179/026708303225008301
|
33 |
Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J]. Mater. Sci. Eng., 2005, A392: 320
|
34 |
Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy [J]. Mater. Sci. Eng., 2002, A337: 121
|
35 |
Chao H Y, Sun H F, Chen W Z, et al. Static recrystallization kinetics of a heavily cold drawn AZ31 magnesium alloy under annealing treatment [J]. Mater. Charact., 2011, 62: 312
doi: 10.1016/j.matchar.2011.01.007
|
36 |
Li Y P, Wu S, Bian H K, et al. Grain refinement due to complex twin formation in rapid hot forging of magnesium alloy [J]. Scr. Mater., 2013, 68: 171
doi: 10.1016/j.scriptamat.2012.10.007
|
37 |
Cao Y, Wang Y B, An X H, et al. Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins [J]. Scr. Mater., 2015, 100: 98
doi: 10.1016/j.scriptamat.2015.01.001
|
38 |
Zhao P, Xie G, Chen C J, et al. Interplay of chemistry and deformation-induced defects on facilitating topologically-close-packed phase precipitation in nickel-base superalloys [J]. Acta Mater., 2022, 236: 118109
doi: 10.1016/j.actamat.2022.118109
|
39 |
Voronova L M, Degtyarev M V, Chashchukhina T I. Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening [J]. Phys. Met. Metallogr., 2007, 104: 262
|
40 |
Zhang B, Lu X, Liu D L, et al. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy [J]. Mater. Sci. Eng., 2012, A551: 149
|
41 |
Fang H C, Chao H, Chen K H. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy [J]. J. Alloys Compd., 2015, 622: 166
doi: 10.1016/j.jallcom.2014.10.044
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|