Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1253-1264    DOI: 10.11900/0412.1961.2023.00141
  研究论文 本期目录 | 过刊浏览 |
K439B铸造高温合金800℃长期时效组织与性能演变
张雷雷1,2, 陈晶阳2(), 汤鑫2, 肖程波2, 张明军2, 杨卿1()
1西安理工大学 材料科学与工程学院 西安 710048
2中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC
ZHANG Leilei1,2, CHEN Jingyang2(), TANG Xin2, XIAO Chengbo2, ZHANG Mingjun2, YANG Qing1()
1School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
Leilei ZHANG, Jingyang CHEN, Xin TANG, Chengbo XIAO, Mingjun ZHANG, Qing YANG. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. Acta Metall Sin, 2023, 59(9): 1253-1264.

全文: PDF(36811 KB)   HTML
摘要: 

对K439B合金开展800℃、3000 h长期时效,研究合金显微组织及力学性能的演变,分析室温拉伸及815℃、379 MPa持久性能的变形机制。结果表明:热处理态K439B合金中的γ'相呈球状,晶界存在MC及M23C6 2种碳化物,而枝晶间仅存在MC碳化物。在800℃长期时效过程中,γ'相的粗化遵循Ostwald熟化机制且形貌趋于立方化,γ′相粗化速率为71.7 nm3/h;晶界和枝晶间MC碳化物发生退化,M23C6碳化物析出含量逐渐增加。时效3000 h后晶界γ'相与M23C6碳化物存在[111] γ' //[111] M23C6、(22¯0) γ′ //(22¯0) M23C6的位向关系。热处理态合金的室温抗拉强度和屈服强度分别为1159.0和911.5 MPa,815℃、379 MPa持久寿命为150.4 h。长期时效后γ'相尺寸增加使得位错的运动方式由以位错在基体中滑移为主向位错切入γ′相为主转变,γ′相中出现了更多的堆垛层错,合金室温拉伸强度和815℃、379 MPa持久寿命均降低。

关键词 K439B长期时效显微组织力学性能变形机制    
Abstract

The K439B alloy is a novel equiaxed superalloy and is used for producing hot section components that need to resist high temperatures in aero engines and gas turbines as its temperature capacity exceeds 800oC. In this study, the evolution of the microstructure and mechanical properties of K439B equiaxed superalloy after being subjected to long-term aging at 800oC for 3000 h was examined. The predominant deformation mechanisms affecting room-temperature tensile and stress rupture properties at 815oC and under 379 MPa stress following different aging durations for the K439B alloy were investigated.Results indicate that for heat-treated alloy, the morphology of the γ' phase is spherical, MC carbide is generated in the interdendritic region and grain boundaries, while M23C6 carbide is in the grain boundaries. During long-term aging at 800oC, γ′ precipitates conform to the Ostwald ripening mechanism for growth and tend to take a cubic form; the coarsening rate of the γ′ phase is calculated to be 71.7 nm3/h; Additionally, the MC carbide deteriorates while the content of M23C6 carbide gradually increases. After long-term aging for 3000 h, the precipitated grain boundary phase comprises MC carbide, γ′ phase, and M23C6 carbide; the orientation relationship between γ′ phase and M23C6 carbide can be described as [111] γ' //[111] M23C6 and (22¯0) γ′ //(22¯0) M23C6. The heat-treated alloy demonstrates room-temperature tensile and yield str-engths of 1159.0 MPa and 911.5 MPa, respectively. Meanwhile, the stress rupture life at 815oC and under 379 MPa stress is 150.4 h. As the size of γ′ precipitates increases, the dominant deformation mechanism shifts from dislocation slipping in the matrix to dislocation cutting through the γ′ phase after long-term aging, resulting in superior stacking faults appeared in the γ′ phase. Consequently, the room-temperature tensile strength and stress rupture life show reduction at 815oC and under 379 MPa stress.

Key wordsK439B    long-term aging    microstructure    mechanical property    deformation mechanism
收稿日期: 2023-04-03     
ZTFLH:  TG132.3  
基金资助:国家科技重大专项项目(J2019-VI-0004-0117);国家重点研发计划项目(2022YFB3706804);先进高温结构材料重点实验室基金项目(6142903210104);先进高温结构材料重点实验室基金项目(6142903220101);中国航空发动机集团科技创新平台项目(CXPT-2018-006)
作者简介: 张雷雷,女,1996年生,博士生
图1  K439B合金800℃长期时效不同时间后的金相组织
图2  K439B合金800℃长期时效不同时间后枝晶干部位γ′相的典型形貌SEM像
图3  K439B合金800℃长期时效不同时间后枝晶干部位的γ′相尺寸分布
AgingAverageVolumeFeret ratio
time / hsize / nmfraction / %
047.0 ± 1.922.9 ± 1.21.09 ± 0.03
10051.8 ± 1.423.4 ± 0.91.29 ± 0.02
50074.3 ± 2.323.7 ± 1.01.34 ± 0.01
100092.4 ± 2.523.1 ± 0.81.36 ± 0.01
2000112.6 ± 3.523.2 ± 1.61.39 ± 0.01
3000120.3 ± 2.224.5 ± 1.71.42 ± 0.01
表1  K439B合金800℃长期时效不同时间后枝晶干部位γ′相的尺寸、体积分数及形状因子
图4  K439B合金800℃长期时效过程中枝晶干γ′相尺寸与时间的关系
图5  K439B合金800℃长期时效不同时间后的碳化物形貌演变
图6  热处理态K439B合金的碳化物形貌
图7  K439B合金800℃时效3000 h后的晶界析出相及元素分布
Aging timeInterdendritic regionGrain boundary
h%%
0-20.86
100-23.64
500-25.98
10002.3429.40
20006.5836.43
300010.1938.93
表2  K439B合金800℃时效不同时间后枝晶间及晶界区域M23C6碳化物的含量
图8  K439B合金800℃长期时效不同时间后的力学性能
图9  K439B合金800℃长期时效不同时间后室温拉伸断口附近位错形貌
图10  K439B合金800℃长期时效不同时间后815℃、379 MPa持久断口附近位错形貌
图11  K439B合金800℃时效不同时间的显微组织演变示意图
1 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 4
1 郭建亭. 高温合金材料学-上册-应用基础理论 [M]. 北京: 科学出版社, 2008: 4
2 Detrois M. Advancing development and application of superalloys [J]. JOM, 2020, 72: 1783
doi: 10.1007/s11837-020-04124-5
3 Schwant R, Shen C, Soare M. New materials enable unprecedented improvement in turbine performance [J]. Adv. Mater. Process., 2013, 171(1): 18
4 Sun B D, Wang J, Shu D. Precision Forming Technology of Large Superalloy Castings for Aircraft Engine [M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 1
4 孙宝德, 王 俊, 疏 达. 航空发动机高温合金大型铸件精密成型技术 [M]. 上海: 上海交通大学出版社, 2016: 1
5 Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068
doi: 10.1126/science.1179327 pmid: 19965415
6 Anderson M, Thielin A L, Bridier F, et al. δ Phase precipitation in Inconel 718 and associated mechanical properties [J]. Mater. Sci. Eng., 2017, A679: 48
7 Anbarasan N, Gupta B K, Prakash S, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 [J]. Mater. Today Proc., 2018, 5: 7716
8 Chen J Y, Ren X D, Zhang M J, et al. Microstructure and typical properties of cast Ni-based superalloy K439B [J]. Heat Treat. Met., 2023, 48(1): 100
doi: 10.13251/j.issn.0254-6051.2023.01.017
8 陈晶阳, 任晓冬 张明军 等. 铸造镍基高温合金K439B的组织及典型性能 [J]. 金属热处理, 2023, 48(1): 100
doi: 10.13251/j.issn.0254-6051.2023.01.017
9 Zhang P, Yuan Y, Yan J B, et al. Morphological evolution of γ' precipitates in superalloy M4706 during thermal aging [J]. Mater. Lett., 2018, 211: 107
doi: 10.1016/j.matlet.2017.09.096
10 Guo X T, Zheng W W, An W R, et al. High temperature creep behavior of a cast polycrystalline nickel-based superalloy K465 under thermal cycling conditions [J]. Materialia, 2020, 14: 100913
doi: 10.1016/j.mtla.2020.100913
11 Kang M D, Sridar S, Xiong W. Influence of long-term aging on microstructural stability and performance of DD6 superalloy [J]. Mater. Sci. Technol., 2021, 37: 607
doi: 10.1080/02670836.2021.1938837
12 Wu R H, Yin Q, Wang J P, et al. Effect of Re on mechanical properties of single crystal Ni-based superalloys: Insights from first-principle and molecular dynamics [J]. J. Alloys Compd., 2021, 862: 158643
doi: 10.1016/j.jallcom.2021.158643
13 Jahangiri M R, Abedini M. Effect of long time service exposure on microstructure and mechanical properties of gas turbine vanes made of IN939 alloy [J]. Mater. Des., 2014, 64: 588
doi: 10.1016/j.matdes.2014.08.035
14 Jahangiri M R, Arabi H, Boutorabi S M A, et al. Comparison of microstructural stability of IN939 superalloy with two different manufacturing routes during long-time aging [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1717
doi: 10.1016/S1003-6326(14)63245-3
15 Ou M Q, Ma Y C, Hou K L, et al. Effect of grain boundary precipitates on the stress rupture properties of K4750 alloy after long-term aging at 750oC for 8000 h [J]. J. Mater. Sci. Technol., 2021, 92: 11
doi: 10.1016/j.jmst.2021.03.022
16 Ou M Q. Strengthening mechanism of K4750 alloy for the large skew plate bearing frame application [D]. Hefei: University of Science and Technology of China, 2018
16 欧美琼. 大型斜支板承力框架用K4750合金强化机制研究 [D]. 合肥: 中国科学技术大学, 2018
17 Liu G, Xiao X S, Véron M, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure [J]. Acta Mater., 2020, 185: 493
doi: 10.1016/j.actamat.2019.12.038
18 Cui J Y, Zhang J T, Yao J. Effect of thermal exposure on the microstructure and stress-rupture properties of a directionally solidified superalloy [J]. J. Mater. Eng. Perform., 2021, 30: 9200
doi: 10.1007/s11665-021-06124-1
19 Chen J B, Huo Q Y, Chen J Y, et al. Tailoring the creep properties of second-generation Ni-based single crystal superalloys by composition optimization of Mo, W and Ti [J]. Mater. Sci. Eng., 2021, A799: 140163
20 Chen M K, Xie J, Shu D L, et al. Effect of long-term thermal exposures on tensile behaviors of K416B nickel-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1699
doi: 10.1007/s40195-020-01075-3
21 Bao H S, Yang G, Chen Z Z, et al. Effects of long-term aging on microstructure and properties of a tungsten bearing heat-resistant alloy [J]. J. Iron Steel Res. Int., 2020, 27: 477
doi: 10.1007/s42243-020-00391-3
22 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
doi: 10.1016/0022-3697(61)90054-3
23 Pyczak F, Devrient B, Mughrabi H. The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 827
24 Baldan A. Review progress in Ostwald ripening theories and their applications to the γ'-precipitates in nickel-base superalloys Part II Nickel-base superalloys [J]. J. Mater. Sci., 2002, 37: 2379
doi: 10.1023/A:1015408116016
25 Thornton K, Akaiwa N, Voorhees P W. Large-scale simulations of Ostwald ripening in elastically stressed solids: I. Development of microstructure [J]. Acta Mater., 2004, 52: 1353
doi: 10.1016/j.actamat.2003.11.037
26 Sun W, Qin X Z, Guo J T, et al. Degeneration process and mechanism of primary MC carbides in a cast Ni-based superalloy [J]. Acta Metall. Sin., 2016, 52: 455
26 孙 文, 秦学智, 郭建亭 等. 铸造镍基高温合金中初生MC碳化物的退化过程和机理 [J]. 金属学报, 2016, 52: 455
27 Xiao X, Zeng C, Hou J S, et al. The decomposition behavior of primary MC carbide in nickel base directionally solidified superalloy DZ444 [J]. Acta Metall. Sin., 2014, 50: 1031
27 肖 旋, 曾 超, 侯介山 等. 定向凝固DZ444镍基高温合金初生MC碳化物的分解行为 [J]. 金属学报, 2014, 50: 1031
28 Cui L Q. Investigation of microstructures and mechanical properties of M951G nickel-base superalloy [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, CAS), 2019
28 崔路卿. M951G镍基高温合金微观组织和力学性能研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2019
29 Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals [J]. Acta Metall. Mater., 1992, 40: 1
doi: 10.1016/0956-7151(92)90195-K
30 Shi Z X, Liu S Z, Zhao J Q. Effect of C content on microstructures and stress rupture properties of a single crystal superalloy [J]. Nonferrous Met. Mater. Eng., 2018, 39(5): 1
30 史振学, 刘世忠, 赵金乾. C含量对一种单晶高温合金组织和持久性能的影响 [J]. 有色金属材料与工程, 2018, 39(5): 1
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.