|
|
K439B铸造高温合金800℃长期时效组织与性能演变 |
张雷雷1,2, 陈晶阳2( ), 汤鑫2, 肖程波2, 张明军2, 杨卿1( ) |
1西安理工大学 材料科学与工程学院 西安 710048 2中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095 |
|
Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC |
ZHANG Leilei1,2, CHEN Jingyang2( ), TANG Xin2, XIAO Chengbo2, ZHANG Mingjun2, YANG Qing1( ) |
1School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 2Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
引用本文:
张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
Leilei ZHANG,
Jingyang CHEN,
Xin TANG,
Chengbo XIAO,
Mingjun ZHANG,
Qing YANG.
Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. Acta Metall Sin, 2023, 59(9): 1253-1264.
1 |
Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 4
|
1 |
郭建亭. 高温合金材料学-上册-应用基础理论 [M]. 北京: 科学出版社, 2008: 4
|
2 |
Detrois M. Advancing development and application of superalloys [J]. JOM, 2020, 72: 1783
doi: 10.1007/s11837-020-04124-5
|
3 |
Schwant R, Shen C, Soare M. New materials enable unprecedented improvement in turbine performance [J]. Adv. Mater. Process., 2013, 171(1): 18
|
4 |
Sun B D, Wang J, Shu D. Precision Forming Technology of Large Superalloy Castings for Aircraft Engine [M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 1
|
4 |
孙宝德, 王 俊, 疏 达. 航空发动机高温合金大型铸件精密成型技术 [M]. 上海: 上海交通大学出版社, 2016: 1
|
5 |
Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068
doi: 10.1126/science.1179327
pmid: 19965415
|
6 |
Anderson M, Thielin A L, Bridier F, et al. δ Phase precipitation in Inconel 718 and associated mechanical properties [J]. Mater. Sci. Eng., 2017, A679: 48
|
7 |
Anbarasan N, Gupta B K, Prakash S, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 [J]. Mater. Today Proc., 2018, 5: 7716
|
8 |
Chen J Y, Ren X D, Zhang M J, et al. Microstructure and typical properties of cast Ni-based superalloy K439B [J]. Heat Treat. Met., 2023, 48(1): 100
doi: 10.13251/j.issn.0254-6051.2023.01.017
|
8 |
陈晶阳, 任晓冬 张明军 等. 铸造镍基高温合金K439B的组织及典型性能 [J]. 金属热处理, 2023, 48(1): 100
doi: 10.13251/j.issn.0254-6051.2023.01.017
|
9 |
Zhang P, Yuan Y, Yan J B, et al. Morphological evolution of γ' precipitates in superalloy M4706 during thermal aging [J]. Mater. Lett., 2018, 211: 107
doi: 10.1016/j.matlet.2017.09.096
|
10 |
Guo X T, Zheng W W, An W R, et al. High temperature creep behavior of a cast polycrystalline nickel-based superalloy K465 under thermal cycling conditions [J]. Materialia, 2020, 14: 100913
doi: 10.1016/j.mtla.2020.100913
|
11 |
Kang M D, Sridar S, Xiong W. Influence of long-term aging on microstructural stability and performance of DD6 superalloy [J]. Mater. Sci. Technol., 2021, 37: 607
doi: 10.1080/02670836.2021.1938837
|
12 |
Wu R H, Yin Q, Wang J P, et al. Effect of Re on mechanical properties of single crystal Ni-based superalloys: Insights from first-principle and molecular dynamics [J]. J. Alloys Compd., 2021, 862: 158643
doi: 10.1016/j.jallcom.2021.158643
|
13 |
Jahangiri M R, Abedini M. Effect of long time service exposure on microstructure and mechanical properties of gas turbine vanes made of IN939 alloy [J]. Mater. Des., 2014, 64: 588
doi: 10.1016/j.matdes.2014.08.035
|
14 |
Jahangiri M R, Arabi H, Boutorabi S M A, et al. Comparison of microstructural stability of IN939 superalloy with two different manufacturing routes during long-time aging [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1717
doi: 10.1016/S1003-6326(14)63245-3
|
15 |
Ou M Q, Ma Y C, Hou K L, et al. Effect of grain boundary precipitates on the stress rupture properties of K4750 alloy after long-term aging at 750oC for 8000 h [J]. J. Mater. Sci. Technol., 2021, 92: 11
doi: 10.1016/j.jmst.2021.03.022
|
16 |
Ou M Q. Strengthening mechanism of K4750 alloy for the large skew plate bearing frame application [D]. Hefei: University of Science and Technology of China, 2018
|
16 |
欧美琼. 大型斜支板承力框架用K4750合金强化机制研究 [D]. 合肥: 中国科学技术大学, 2018
|
17 |
Liu G, Xiao X S, Véron M, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure [J]. Acta Mater., 2020, 185: 493
doi: 10.1016/j.actamat.2019.12.038
|
18 |
Cui J Y, Zhang J T, Yao J. Effect of thermal exposure on the microstructure and stress-rupture properties of a directionally solidified superalloy [J]. J. Mater. Eng. Perform., 2021, 30: 9200
doi: 10.1007/s11665-021-06124-1
|
19 |
Chen J B, Huo Q Y, Chen J Y, et al. Tailoring the creep properties of second-generation Ni-based single crystal superalloys by composition optimization of Mo, W and Ti [J]. Mater. Sci. Eng., 2021, A799: 140163
|
20 |
Chen M K, Xie J, Shu D L, et al. Effect of long-term thermal exposures on tensile behaviors of K416B nickel-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1699
doi: 10.1007/s40195-020-01075-3
|
21 |
Bao H S, Yang G, Chen Z Z, et al. Effects of long-term aging on microstructure and properties of a tungsten bearing heat-resistant alloy [J]. J. Iron Steel Res. Int., 2020, 27: 477
doi: 10.1007/s42243-020-00391-3
|
22 |
Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
doi: 10.1016/0022-3697(61)90054-3
|
23 |
Pyczak F, Devrient B, Mughrabi H. The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 827
|
24 |
Baldan A. Review progress in Ostwald ripening theories and their applications to the γ'-precipitates in nickel-base superalloys Part II Nickel-base superalloys [J]. J. Mater. Sci., 2002, 37: 2379
doi: 10.1023/A:1015408116016
|
25 |
Thornton K, Akaiwa N, Voorhees P W. Large-scale simulations of Ostwald ripening in elastically stressed solids: I. Development of microstructure [J]. Acta Mater., 2004, 52: 1353
doi: 10.1016/j.actamat.2003.11.037
|
26 |
Sun W, Qin X Z, Guo J T, et al. Degeneration process and mechanism of primary MC carbides in a cast Ni-based superalloy [J]. Acta Metall. Sin., 2016, 52: 455
|
26 |
孙 文, 秦学智, 郭建亭 等. 铸造镍基高温合金中初生MC碳化物的退化过程和机理 [J]. 金属学报, 2016, 52: 455
|
27 |
Xiao X, Zeng C, Hou J S, et al. The decomposition behavior of primary MC carbide in nickel base directionally solidified superalloy DZ444 [J]. Acta Metall. Sin., 2014, 50: 1031
|
27 |
肖 旋, 曾 超, 侯介山 等. 定向凝固DZ444镍基高温合金初生MC碳化物的分解行为 [J]. 金属学报, 2014, 50: 1031
|
28 |
Cui L Q. Investigation of microstructures and mechanical properties of M951G nickel-base superalloy [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, CAS), 2019
|
28 |
崔路卿. M951G镍基高温合金微观组织和力学性能研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2019
|
29 |
Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals [J]. Acta Metall. Mater., 1992, 40: 1
doi: 10.1016/0956-7151(92)90195-K
|
30 |
Shi Z X, Liu S Z, Zhao J Q. Effect of C content on microstructures and stress rupture properties of a single crystal superalloy [J]. Nonferrous Met. Mater. Eng., 2018, 39(5): 1
|
30 |
史振学, 刘世忠, 赵金乾. C含量对一种单晶高温合金组织和持久性能的影响 [J]. 有色金属材料与工程, 2018, 39(5): 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|