Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1655-1664    DOI: 10.11900/0412.1961.2021.00473
  本期目录 | 过刊浏览 |
SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能
马国楠1,2, 朱士泽1,2, 王东1(), 肖伯律1, 马宗义1
1中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites
MA Guonan1,2, ZHU Shize1,2, WANG Dong1(), XIAO Bolv1, MA Zongyi1
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
Guonan MA, Shize ZHU, Dong WANG, Bolv XIAO, Zongyi MA. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. Acta Metall Sin, 2023, 59(12): 1655-1664.

全文: PDF(3619 KB)   HTML
摘要: 

利用粉末冶金法制备了含15%SiC (体积分数) 的SiC/Al-7.5Zn-2.8Mg-1.7Cu (质量分数,%)复合材料及其合金,对比了复合材料及其合金的硬度、电导率和力学性能随时效时间延长的变化规律,并提出了适用于SiC/Al-Zn-Mg-Cu复合材料的T6时效热处理工艺。利用TEM和HRTEM技术,对不同时效状态下的纳米析出相进行了定量分析。结果表明,SiC颗粒对复合材料的时效过程具有明显的促进作用,相同人工时效工艺处理后,复合材料中析出相尺寸更大、密度更低。复合材料提前14 h达到硬度最大值(238 HV),且比未增强合金的硬度最大值高29 HV。复合材料晶界处无析出带(PFZ)宽度与未增强合金相似,但粗大的第二相明显增多,这些晶界相和界面反应产物的形成均可消耗合金元素,降低晶内沉淀相的密度。HRTEM结果表明,SiC颗粒没有改变Al-Zn-Mg-Cu合金的时效析出序列,仍为过饱和固溶体(SSS)-GP区-η'-η相,其中过渡相η'是T6态复合材料的主要强化相。

关键词 粉末冶金金属基复合材料时效行为析出相力学性能    
Abstract

Particulate reinforced aluminum matrix composites are widely used in various industrial fields owing to their high specific strength and modulus, low coefficient of thermal expansion, etc. In general, because stronger matrix alloys tend to produce stronger composites, composites with high-strength Al-Zn-Mg-Cu alloys as the matrix are paid considerable attention. However, the aging behavior of the SiC/Al-Zn-Mg-Cu composites has not been well understood. In the present work, SiC particles with a volume fraction of 15% reinforced Al-7.5Zn-2.8Mg-1.7Cu (mass fraction, %) composite and corresponding unreinforced alloy were fabricated using the powder metallurgy technique. The effects of the aging time on the hardness, electrical conductivity, and mechanical properties of the composite and corresponding matrix alloy were investigated. The T6 heat treatment process suitable for the composite was proposed. The nanoscale precipitates under different aging conditions were quantitatively analyzed using TEM and HRTEM. The results indicated that the SiC particles exhibited an obvious promoting effect on the aging process of the SiC/Al-Zn-Mg-Cu composite. The composite reached the corresponding maximum hardness 14 h earlier than the unreinforced alloy. The maximum hardness (238 HV) of the composite was 29 HV higher than that of the unreinforced alloy. The width of the precipitation-free zone of the composite was similar to that of the unreinforced alloy, but the number of the grain boundary phases in the composite increased. The formation of the grain boundary phases and interfacial reaction products could consume alloying elements and reduce the density of precipitated phases in the composite. Based on HRTEM, SiC particles did not change the aging precipitation sequence (SSS-GP zone-η'-η) of the Al-Zn-Mg-Cu alloy, and the η' phase was the major strengthening phase of the T6-treated SiC/Al-Zn-Mg-Cu composites.

Key wordspowder metallurgy    metal matrix composite    aging behavior    precipitated phase    mechanical property
收稿日期: 2021-11-01     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2017YFB0703104);国家自然科学基金项目(51771193);辽宁省“兴辽英才计划”项目(XLYC2007009)
通讯作者: 王 东,dongwang@imr.ac.cn,主要从事铝基复合材料的研究
作者简介: 马国楠,男,1992年生,博士
图1  挤压态未增强合金(Al-7.5Zn-2.8Mg-1.7Cu)及复合材料(SiC/Al-7.5Zn-2.8Mg-1.7Mn)棒材显微组织的OM像和晶粒尺寸统计柱状图
图2  120℃单级时效未增强合金和复合材料样品的硬度和电导率曲线
图3  未增强合金和复合材料在120℃下时效0、2、8、10、24和48 h的力学性能
图4  不同时效状态未增强合金沿[110]Al方向的析出相形貌和尺寸统计柱状图
图5  不同时效状态复合材料沿[110]Al方向的析出相形貌和尺寸统计柱状图
图6  固溶态未增强合金和复合材料的DSC曲线
PeakUnreinforced alloyComposite
17979
2172-
3224218
4243240
5262262
6450438
表1  固溶态未增强合金和复合材料DSC曲线中各峰值点(见图6)的温度 (oC)
图7  T6态复合材料沿[110]Al方向的析出相高分辨透射照片和快速Fourier变换花样
图8  未增强合金和复合材料不同时效处理后晶界的TEM明场像
1 Ma K, Zhang X X, Wang D, et al. Optimization and simulation of deformation parameters of SiC/2009Al composites[J]. Acta Metall. Sin., 2019, 55: 1329
doi: 10.11900/0412.1961.2019.00020
1 马 凯, 张星星, 王 东 等. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55: 1329
2 Xiao B L, Liu Z Y, Zhang X X, et al. Metal matrix composites for future application[J]. Mater. China, 2016, 35: 666
2 肖伯律, 刘振宇, 张星星 等. 面向未来应用的金属基复合材料[J]. 中国材料进展, 2016, 35: 666
3 Li B, Luo B H, He K J, et al. Effect of aging on interface characteristics of Al-Mg-Si/SiC composites[J]. J. Alloys Compd., 2015, 649: 495
doi: 10.1016/j.jallcom.2015.07.033
4 Monazzah A H, Pouraliakbar H, Bagheri R, et al. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms[J]. Composites, 2017, 125B: 49
5 Tong P, Lin L, Wang Q Z, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Mater. Composit. Sin., 2019, 36: 927
5 童 攀, 林 立, 王全兆 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36: 927
6 Jin P, Xiao B L, Wang Q Z, et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites[J]. Mater. Sci. Eng., 2011, A528: 1504
7 Wen K, Xiong B Q, Zhang Y A, et al. Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., 2018, A716: 42
8 Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites[J]. Mater. Sci. Eng., 2019, A767: 138422
9 Dasgupta R, Meenai H. SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: Property comparison with parent alloy[J]. Mater. Charact., 2005, 54: 438
doi: 10.1016/j.matchar.2005.01.012
10 Kumar N V R, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCP composites[J]. Composites, 2000, 31A: 1139
11 Manoharan M, Lewandowski J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite[J]. Mater. Sci. Eng., 1992, A150: 179
12 Wang F F, Meng W, Zhang H W, et al. Effects of under-aging treatment on microstructure and mechanical properties of squeeze-cast Al-Zn-Mg-Cu alloy[J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1920
doi: 10.1016/S1003-6326(18)64837-X
13 Li L, Wei L J, Xu Y J, et al. Study on the optimizing mechanisms of superior comprehensive properties of a hot spray formed Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., 2019, A742: 102
14 Chen Z G, Yuan Z G, Ren J K. The mechanism of comprehensive properties enhancement in Al-Zn-Mg-Cu alloy via novel thermomechanical treatment[J]. J. Alloys Compd., 2020, 828: 154446
doi: 10.1016/j.jallcom.2020.154446
15 Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
16 Chemingui M, Khitouni M, Jozwiak K, et al. Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70° and 135oC[J]. Mater. Des., 2010, 31: 3134
doi: 10.1016/j.matdes.2009.12.033
17 Alarcon O E, Nazar A M M, Monteiro W A. The effect of microstructure on the mechanical behavior and fracture mechanism in a 7050-T76 aluminum alloy[J]. Mater. Sci. Eng., 1991, A138: 275
18 Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites[J]. Mater. Charact., 2019, 158: 109966
doi: 10.1016/j.matchar.2019.109966
19 Song J Y, Guo Q, Ouyang Q B, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites[J]. Mater. Sci. Eng., 2015, A644: 79
20 Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites[J]. Acta Metall. Sin., 2019, 55: 1319
doi: 10.11900/0412.1961.2018.00523
20 马国楠, 王 东, 刘振宇 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55: 1319
doi: 10.11900/0412.1961.2018.00523
21 Huang Z Y, Zhang X X, Yang C, et al. Abnormal deformation behavior and particle distribution during hot compression of fine-grained 14vol%SiCp/2014Al composite[J]. J. Alloys Compd., 2018, 743: 87
doi: 10.1016/j.jallcom.2018.01.397
22 Ma G N, Wang D, Xiao B L, et al. Effect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites[J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1447
doi: 10.1007/s40195-021-01254-w
23 Wang X D, Pan Q L, Liu L L, et al. Characterization of hot extrusion and heat treatment on mechanical properties in a spray formed ultra-high strength Al-Zn-Mg-Cu alloy[J]. Mater. Charact., 2018, 144: 131
doi: 10.1016/j.matchar.2018.07.012
24 Li J J, Ju J, Zhang Z, et al. Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment[J]. Mater. Charact., 2021, 172: 110827
doi: 10.1016/j.matchar.2020.110827
25 Lai Y X, Fan W, Yin M J, et al. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys[J]. J. Mater. Sci. Technol., 2020, 41: 127
doi: 10.1016/j.jmst.2019.11.001
26 Shu W X, Hou L G, Zhang C, et al. Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys[J]. Mater. Sci. Eng., 2016, A657: 269
27 Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050[J]. Mater. Sci. Eng., 2008, 492: 1
doi: 10.1016/j.msea.2008.02.039
28 Wu C D, Ma K K, Zhang D L, et al. Precipitation phenomena in Al-Zn-Mg alloy matrix composites reinforced with B4C particles[J]. Sci. Rep., 2017, 7: 9589
doi: 10.1038/s41598-017-10291-4
29 Wu L M, Seyring M, Rettenmayr M, et al. Characterization of precipitate evolution in an artificially aged Al-Zn-Mg-Sc-Zr alloy[J]. Mater. Sci. Eng., 2010, A527: 1068
30 Li H C, Cao F Y, Guo S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys[J]. J. Alloys Compd., 2017, 719: 89
doi: 10.1016/j.jallcom.2017.05.101
31 Zhao J G, Liu Z Y, Bai S, et al. Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al-Zn-Mg-Cu alloy[J]. J. Alloys Compd., 2020, 829: 154469
doi: 10.1016/j.jallcom.2020.154469
32 Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites[J]. Mater. Sci. Eng., 2018, A711: 643
33 Nie J H, Fan J Z, Zhang S M, et al. Tensile and fracture properties of 15vol%SiCp/2009Al composites fabricated by hot isostatic pres-sing and hot extrusion processes[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
34 Hong Y, Wang W J, Liu J Q, et al. Effect of porosity and interface structures on thermal and mechanical properties of SiCp/6061Al composites with high volume fraction of SiC[J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 941
doi: 10.1016/S1003-6326(19)65003-X
35 Wen K, Fan Y Q, Wang G J, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers[J]. Mater. Des., 2016, 101: 16
doi: 10.1016/j.matdes.2016.03.150
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[11] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.