Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1665-1674    DOI: 10.11900/0412.1961.2021.00568
  本期目录 | 过刊浏览 |
Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变
陈凯旋1, 李宗烜1, 王自东1,2(), Demange Gilles3, 陈晓华2, 张佳伟1, 吴雪华1, Zapolsky Helena3
1北京科技大学 材料科学与工程学院 北京 100083
2北京科技大学 新金属材料国家重点实验室 北京 100083
3Group of Materials Science, University of Rouen Normandy, 76801 Saint-Etienne du Rouvray, France
Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment
CHEN Kaixuan1, LI Zongxuan1, WANG Zidong1,2(), Demange Gilles3, CHEN Xiaohua2, ZHANG Jiawei1, WU Xuehua1, Zapolsky Helena3
1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3Group of Materials Science, University of Rouen Normandy, 76801 Saint-Etienne du Rouvray, France
引用本文:

陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
Kaixuan CHEN, Zongxuan LI, Zidong WANG, Gilles Demange, Xiaohua CHEN, Jiawei ZHANG, Xuehua WU, Helena Zapolsky. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. Acta Metall Sin, 2023, 59(12): 1665-1674.

全文: PDF(3455 KB)   HTML
摘要: 

研究了Cu-2.0Fe (质量分数,%)合金中富Fe析出相形态的演变行为及其与等温温度和保温时间的关系。结果表明,Cu-2.0Fe合金在Fe相fcc温区内的924、964和984℃保温时,富Fe相粗化并伴随着球状(纳米级)→立方状(亚微米级)→四分支花瓣状(亚微米级)→多分支花瓣状(微米级)的形态演变。随着等温温度和保温时间的增加,多分支花瓣状颗粒的尺寸逐步增大,分支数量逐步增加。多分支花瓣状颗粒的长大需要吞噬周边的小颗粒,导致温度升高时纳米~亚微米级富Fe颗粒的数量密度下降。基于相场模拟的分析表明,界面能、弹性能和化学驱动力的综合作用诱发富Fe相的多重形态演变,其中四分支花瓣状颗粒长大过程中,在弹性应变能和化学驱动力相互角逐作用下,从一次分支上生长出二次分支,进而产生了多分支花瓣状的形态。

关键词 铜合金析出相形态演变材料表征相场模拟    
Abstract

The morphology of precipitates changes during coarsening regimes, thereby resulting in the modification of mechanical properties of metallic materials. Hence, understanding the morphological evolution in precipitates is critical to tailor the macroscopic properties of industrial alloys. In particular, the morphology of Fe-rich precipitates in Cu alloys is complex, and it evolves from sphere to cube to petal and finally splits, which has been observed during casting and furnace cooling. However, morphological changes in Fe-rich precipitates during isothermal treatment remain unclear; thus, revealing the mechanism of morphological evolution is necessary. In this study, the relationship among the morphological evolution behavior of Fe-rich precipitates in Cu-2.0Fe (mass fraction, %) alloy, temperature, and time under different isothermal-treated processes was analyzed using SEM and TEM coupled with phase-field modeling. Results show morphology changes from a sphere in nanoscale to a cube in submicron scale to a four-branched petal in the submicron scale, and to a multi-branched petal in micron scale during coarsening of Fe-rich precipitates in Cu-2.0Fe alloy isothermally treated at 924, 964, and 984oC (i.e., the temperature range of the fcc Fe phase). The size of multi-branched petal-like Fe-rich precipitates and the number of branches increase with the increase of isothermal temperature and holding time. During coarsening of multi-branched petal-like precipitates, the surrounding small Fe-rich precipitates are engulfed, and thence the number density of the smaller ones in nano and submicron scales decreases when the temperature increases. The modeling result elucidates the multiple morphological evolution of Fe-rich precipitates, which is identical to the experiments, under the effects of interfacial energy, elastic energy, and chemical driving force. In particular, the combined effect of the latter two energies induces the initiation and growth of secondary branches out of primary branches in the four-branched petals, thereby producing multi-branched petal-like precipitates.

Key wordscopper alloy    precipitate    morphological evolution    material characterization    phase-field simulation
收稿日期: 2021-12-16     
ZTFLH:  TG166.2  
基金资助:国家自然科学基金项目(52101119);北京市自然科学基金青年项目(2214072);北京科技大学青年教师学科交叉研究项目(中央高校基本科研业务费专项资金)(FRF-IDRY-20-034);中央高校基本科研业务费专项资金项目(00007490)
通讯作者: 王自东,wangzd@mater.ustb.edu.cn,主要从事金属材料加工理论和工艺的研究
作者简介: 陈凯旋,男,1991年生,副教授,博士
图1  空冷凝固态Cu-2.0Fe合金中富Fe析出相显微组织及EDS分析
图2  水冷凝固态Cu-2.0Fe合金中富Fe析出相表征
图3  水冷凝固态Cu-2.0Fe合金等温处理后富Fe析出相的SEM像和EDS面扫图
图4  图3中水冷凝固态Cu-2.0Fe合金等温处理后SEM像局部放大图
图5  等温处理6 h后微米级花瓣状颗粒周边的富Fe小颗粒的尺寸分布和数量密度
图6  水冷凝固态Cu-2.0Fe合金在964℃等温处理不同时间后富Fe析出相的SEM像和EDS面扫图
图7  相场模拟结果显示Cu-Fe体系(平均Fe浓度c¯ = 0.02)在984℃下单个富Fe析出相的二维形态演变(初始状态为半径R = 4Δx (Δx为栅格间距)的球状纯Fe晶核,模拟盒子尺寸为10242)
1 Chen K X, Chen X H, Ding D, et al. Formation mechanism of in-situ nanostructured grain in cast Cu-10Sn-2Zn-1.5Fe-0.5Co (wt.%) alloy[J]. Mater. Des., 2016, 94: 338
doi: 10.1016/j.matdes.2016.01.064
2 Chen K X, Chen X H, Wang Z D, et al. Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure[J]. J. Alloys Compd., 2018, 763: 592
doi: 10.1016/j.jallcom.2018.05.297
3 Li Z, Wu R. Research development of theoretical basis and application of strengthening precipitates in steel[J]. Mater. Rep., 2020, 34(Z2): 412
3 李 钊, 吴 润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412
4 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
5 Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity[J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086 pmid: 30819960
6 Sidorov V, Polovov I, Rusanov B, et al. Density, electroresistivity and magnetic susceptibility of Al-Sc alloy in crystalline and liquid states[J]. J. Alloys Compd., 2019, 787: 1345
doi: 10.1016/j.jallcom.2019.01.354
7 Liu C W, Li Y S, Zhu L H, et al. Precipitation kinetics of γ phase in an inverse Ni-Al alloy[J]. Comput. Condens. Matter, 2017, 11: 40
8 Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review[J]. Prog. Mater. Sci., 2020, 110: 100633
doi: 10.1016/j.pmatsci.2019.100633
9 Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Mater., 2001, 49: 1909
doi: 10.1016/S1359-6454(01)00116-1
10 Van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys[J]. Acta Mater., 2005, 53: 4225
doi: 10.1016/j.actamat.2005.05.022
11 Miyazaki T, Imamura H, Kozakai T. The formation of “γ' precipitate doublets” in Ni-Al alloys and their energetic stability[J]. Mater. Sci. Eng., 1982, 54: 9
doi: 10.1016/0025-5416(82)90024-6
12 Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ' phase in nickel-based powder metallurgy superalloys[J]. Acta Metall. Sin., 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
12 胡本芙, 刘国权, 吴 凯 等. 镍基粉末冶金高温合金中γ'相形态不稳定性研究[J]. 金属学报, 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
13 Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys[J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
14 Chen Y Q, Prasath Babu R, Slater T J A, et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy[J]. Acta Mater., 2016, 110: 295
doi: 10.1016/j.actamat.2016.02.067
15 Wang L, Zenk C, Stark A, et al. Morphology evolution of Ti3AlC carbide precipitates in high Nb containing TiAl alloys[J]. Acta Mater., 2017, 137: 36
doi: 10.1016/j.actamat.2017.07.018
16 Tian G F, Chen Y, Zou J W, et al. Research on morphology instability of γ' precipitates in FGH4096 superalloy[J]. Powder Metall. Ind., 2018, 28(6): 23
16 田高峰, 陈 阳, 邹金文 等. FGH4096合金γ'析出相的形态失稳研究[J]. 粉末冶金工业, 2018, 28(6): 23
17 Vogel F, Wanderka N, Balogh Z, et al. Mapping the evolution of hierarchical microstructures in a Ni-based superalloy[J]. Nat. Commun., 2013, 4: 2955
doi: 10.1038/ncomms3955 pmid: 24356413
18 Jokisaari A M, Naghavi S S, Wolverton C, et al. Predicting the morphologies of γ' precipitates in cobalt-based superalloys[J]. Acta Mater., 2017, 141: 273
doi: 10.1016/j.actamat.2017.09.003
19 Wang Z D, Wang X W, Wang Q S, et al. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy[J]. Nanotechnology, 2009, 20: 075605
20 Ye Y X, Yang X Y, Liu C Z, et al. Enhancement of strength and ductility of Cu-Sn-Zn alloy by iron addition[J]. Mater. Sci. Eng., 2014, A612: 246
21 Cao M M, Zhou Z M, Tang L W, et al. Development of Cu-Fe alloys with high strength and high conductivity[J]. Mater. Rep., 2011, 25: 487
21 曹敏敏, 周志明, 唐丽文 等. 高强高导Cu-Fe合金的研究进展[J]. 材料导报, 2011, 25: 487
22 Chen K X, Korzhavyi P A, Demange G, et al. Morphological instability of iron-rich precipitates in Cu-Fe-Co alloys[J]. Acta Mater., 2019, 163: 55
doi: 10.1016/j.actamat.2018.10.013
23 Han S Z, Kim K H, Kang J, et al. Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of γ-Al2O3 nanoparticles[J]. Sci. Rep., 2015, 5: 17364
doi: 10.1038/srep17364
24 Böhm H J, Rasool A. Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites[J]. Int. J. Solids Struct., 2016, 87: 90
doi: 10.1016/j.ijsolstr.2016.02.028
25 Qin S Y, Chen C R, Zhang G D, et al. The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites[J]. Mater. Sci. Eng., 1999, A272: 363
26 Hu H, Li L, Xu L. Research progress on the preparation technology of Cu-Fe alloy[J]. Powder Metall. Technol., 2019, 37: 468
26 胡 号, 李 雷, 许 磊. Cu-Fe合金制备技术研究进展[J]. 粉末冶金技术, 2019, 37: 468
27 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 152
27 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版. 上海: 上海交通大学出版社, 2010: 152
28 Zuo L F, Ni R, Wang Z D, et al. Nano-precipitates in low carbon high strength steel during the tempering process[J]. J. Iron Steel Res., 2013, 25(2): 39
28 左龙飞, 倪 睿, 王自东 等. 低碳高强钢中纳米析出相回火过程中的透射分析[J]. 钢铁研究学报, 2013, 25(3): 39
29 Demange G, Chamaillard M, Zapolsky H, et al. Generalization of the Fourier-spectral Eyre scheme for the phase-field equations: Application to self-assembly dynamics in materials[J]. Comput. Mater. Sci., 2018, 144: 11
doi: 10.1016/j.commatsci.2017.11.044
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[5] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[10] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[11] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[12] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[13] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[14] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[15] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.