|
|
Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变 |
陈凯旋1, 李宗烜1, 王自东1,2( ), Demange Gilles3, 陈晓华2, 张佳伟1, 吴雪华1, Zapolsky Helena3 |
1北京科技大学 材料科学与工程学院 北京 100083 2北京科技大学 新金属材料国家重点实验室 北京 100083 3Group of Materials Science, University of Rouen Normandy, 76801 Saint-Etienne du Rouvray, France |
|
Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment |
CHEN Kaixuan1, LI Zongxuan1, WANG Zidong1,2( ), Demange Gilles3, CHEN Xiaohua2, ZHANG Jiawei1, WU Xuehua1, Zapolsky Helena3 |
1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3Group of Materials Science, University of Rouen Normandy, 76801 Saint-Etienne du Rouvray, France |
引用本文:
陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
Kaixuan CHEN,
Zongxuan LI,
Zidong WANG,
Gilles Demange,
Xiaohua CHEN,
Jiawei ZHANG,
Xuehua WU,
Helena Zapolsky.
Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. Acta Metall Sin, 2023, 59(12): 1665-1674.
1 |
Chen K X, Chen X H, Ding D, et al. Formation mechanism of in-situ nanostructured grain in cast Cu-10Sn-2Zn-1.5Fe-0.5Co (wt.%) alloy[J]. Mater. Des., 2016, 94: 338
doi: 10.1016/j.matdes.2016.01.064
|
2 |
Chen K X, Chen X H, Wang Z D, et al. Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure[J]. J. Alloys Compd., 2018, 763: 592
doi: 10.1016/j.jallcom.2018.05.297
|
3 |
Li Z, Wu R. Research development of theoretical basis and application of strengthening precipitates in steel[J]. Mater. Rep., 2020, 34(Z2): 412
|
3 |
李 钊, 吴 润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412
|
4 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
5 |
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity[J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086
pmid: 30819960
|
6 |
Sidorov V, Polovov I, Rusanov B, et al. Density, electroresistivity and magnetic susceptibility of Al-Sc alloy in crystalline and liquid states[J]. J. Alloys Compd., 2019, 787: 1345
doi: 10.1016/j.jallcom.2019.01.354
|
7 |
Liu C W, Li Y S, Zhu L H, et al. Precipitation kinetics of γ phase in an inverse Ni-Al alloy[J]. Comput. Condens. Matter, 2017, 11: 40
|
8 |
Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review[J]. Prog. Mater. Sci., 2020, 110: 100633
doi: 10.1016/j.pmatsci.2019.100633
|
9 |
Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Mater., 2001, 49: 1909
doi: 10.1016/S1359-6454(01)00116-1
|
10 |
Van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys[J]. Acta Mater., 2005, 53: 4225
doi: 10.1016/j.actamat.2005.05.022
|
11 |
Miyazaki T, Imamura H, Kozakai T. The formation of “γ' precipitate doublets” in Ni-Al alloys and their energetic stability[J]. Mater. Sci. Eng., 1982, 54: 9
doi: 10.1016/0025-5416(82)90024-6
|
12 |
Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ' phase in nickel-based powder metallurgy superalloys[J]. Acta Metall. Sin., 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
|
12 |
胡本芙, 刘国权, 吴 凯 等. 镍基粉末冶金高温合金中γ'相形态不稳定性研究[J]. 金属学报, 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
|
13 |
Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys[J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
|
14 |
Chen Y Q, Prasath Babu R, Slater T J A, et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy[J]. Acta Mater., 2016, 110: 295
doi: 10.1016/j.actamat.2016.02.067
|
15 |
Wang L, Zenk C, Stark A, et al. Morphology evolution of Ti3AlC carbide precipitates in high Nb containing TiAl alloys[J]. Acta Mater., 2017, 137: 36
doi: 10.1016/j.actamat.2017.07.018
|
16 |
Tian G F, Chen Y, Zou J W, et al. Research on morphology instability of γ' precipitates in FGH4096 superalloy[J]. Powder Metall. Ind., 2018, 28(6): 23
|
16 |
田高峰, 陈 阳, 邹金文 等. FGH4096合金γ'析出相的形态失稳研究[J]. 粉末冶金工业, 2018, 28(6): 23
|
17 |
Vogel F, Wanderka N, Balogh Z, et al. Mapping the evolution of hierarchical microstructures in a Ni-based superalloy[J]. Nat. Commun., 2013, 4: 2955
doi: 10.1038/ncomms3955
pmid: 24356413
|
18 |
Jokisaari A M, Naghavi S S, Wolverton C, et al. Predicting the morphologies of γ' precipitates in cobalt-based superalloys[J]. Acta Mater., 2017, 141: 273
doi: 10.1016/j.actamat.2017.09.003
|
19 |
Wang Z D, Wang X W, Wang Q S, et al. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy[J]. Nanotechnology, 2009, 20: 075605
|
20 |
Ye Y X, Yang X Y, Liu C Z, et al. Enhancement of strength and ductility of Cu-Sn-Zn alloy by iron addition[J]. Mater. Sci. Eng., 2014, A612: 246
|
21 |
Cao M M, Zhou Z M, Tang L W, et al. Development of Cu-Fe alloys with high strength and high conductivity[J]. Mater. Rep., 2011, 25: 487
|
21 |
曹敏敏, 周志明, 唐丽文 等. 高强高导Cu-Fe合金的研究进展[J]. 材料导报, 2011, 25: 487
|
22 |
Chen K X, Korzhavyi P A, Demange G, et al. Morphological instability of iron-rich precipitates in Cu-Fe-Co alloys[J]. Acta Mater., 2019, 163: 55
doi: 10.1016/j.actamat.2018.10.013
|
23 |
Han S Z, Kim K H, Kang J, et al. Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of γ-Al2O3 nanoparticles[J]. Sci. Rep., 2015, 5: 17364
doi: 10.1038/srep17364
|
24 |
Böhm H J, Rasool A. Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites[J]. Int. J. Solids Struct., 2016, 87: 90
doi: 10.1016/j.ijsolstr.2016.02.028
|
25 |
Qin S Y, Chen C R, Zhang G D, et al. The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites[J]. Mater. Sci. Eng., 1999, A272: 363
|
26 |
Hu H, Li L, Xu L. Research progress on the preparation technology of Cu-Fe alloy[J]. Powder Metall. Technol., 2019, 37: 468
|
26 |
胡 号, 李 雷, 许 磊. Cu-Fe合金制备技术研究进展[J]. 粉末冶金技术, 2019, 37: 468
|
27 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 152
|
27 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 第3版. 上海: 上海交通大学出版社, 2010: 152
|
28 |
Zuo L F, Ni R, Wang Z D, et al. Nano-precipitates in low carbon high strength steel during the tempering process[J]. J. Iron Steel Res., 2013, 25(2): 39
|
28 |
左龙飞, 倪 睿, 王自东 等. 低碳高强钢中纳米析出相回火过程中的透射分析[J]. 钢铁研究学报, 2013, 25(3): 39
|
29 |
Demange G, Chamaillard M, Zapolsky H, et al. Generalization of the Fourier-spectral Eyre scheme for the phase-field equations: Application to self-assembly dynamics in materials[J]. Comput. Mater. Sci., 2018, 144: 11
doi: 10.1016/j.commatsci.2017.11.044
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|