|
|
低应变预变形对变温马氏体相变行为的影响规律及作用机制 |
王金亮, 王晨充, 黄明浩, 胡军, 徐伟( ) |
东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 |
|
The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation |
WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei( ) |
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
Jinliang WANG,
Chenchong WANG,
Minghao HUANG,
Jun HU,
Wei XU.
The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. Acta Metall Sin, 2021, 57(5): 575-585.
1 |
Zhou T P, Wang C Y, Wang C, et al. Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel [J]. Mater. Sci. Eng., 2020, A798: 140147
|
2 |
He B B, Pan S, Huang M X. Extra work hardening in room-temperature quenching and partitioning medium Mn steel enabled by intercritical annealing [J]. Mater. Sci. Eng., 2020, A797: 140106
|
3 |
de Knijf D D, Petrov R, Föjer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng., 2014, A615: 107
|
4 |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
|
5 |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
|
6 |
Yang G, Huang C X, Wu S D, et al. Strain-induced martensitic transformation in 304L austenitic stainless steel under ECAP deformation [J]. Acta Metall. Sin., 2009, 45: 906
|
6 |
杨 钢, 黄崇湘, 吴世丁等. ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变 [J]. 金属学报, 2009, 45: 906
|
7 |
Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling [J]. Acta Metall. Sin., 2018, 54: 859
|
7 |
阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究 [J]. 金属学报, 2018, 54: 859
|
8 |
Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
|
8 |
邵成伟, 惠卫军, 张永健等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191
|
9 |
van der Zwaag S, Zhao L, Kruijver S O, et al. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels [J]. ISIJ Int., 2002, 42: 1565
|
10 |
Garrison Jr W M, Brooks J A. The thermal and mechanical stability of austenite in the low carbon martensitic steel PH 13-8 [J]. Mater. Sci. Eng., 1991, A149: 65
|
11 |
Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta Metall. Sin., 2020, 56: 459
|
11 |
徐 伟, 黄明浩, 王金亮等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
|
12 |
van Bohemen S M C, Sietsma J. Effect of composition on kinetics of athermal martensite formation in plain carbon steels [J]. Mater. Sci. Technol., 2009, 25: 1009
|
13 |
Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
|
14 |
Chen S, Wang C C, Shan L Y, et al. Revealing the conditions of bainitic transformation in quenching and partitioning steels [J]. Metall. Mater. Trans., 2019, 50A: 4037
|
15 |
Song C H, Yu H, Li L L, et al. The stability of retained austenite at different locations during straining of I&Q&P steel [J]. Mater. Sci. Eng., 2016, A670: 326
|
16 |
Le Houillier R, Bégin G, Dubé A. A study of the peculiarities of austenite during the formation of bainite [J]. Metall. Trans., 1971, 2: 2645
|
17 |
Brofman P J, Ansell G S. On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys [J]. Metall. Trans., 1983, 14A: 1929
|
18 |
Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature [J]. Scr. Mater., 2009, 60: 493
|
19 |
Fiedler H C, Averbach B L, Cohen M. Effect of deformation on the martensitic transformation in stainless steels [J]. Trans. ASM, 1955, 47: 267
|
20 |
Breedis J F. Influence of dislocation substructure on the martensitic transformation in stainless steel [J]. Acta Metall., 1965, 13: 239
|
21 |
Lagneborgj R. The martensite transformation in 18%Cr-8%Ni steels [J]. Acta Metall., 1964, 12: 823
|
22 |
Strife J R, Carr M J, Ansell G S. The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe-Ni-Cr-C alloys [J]. Metall. Trans., 1977, 8A: 1471
|
23 |
Thadhani N N, Meyers M A. Kinetics of isothermal martensitic transformation [J]. Prog. Mater. Sci., 1986, 30: 1
|
24 |
Pati S R, Cohen M. Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy [J]. Acta Metall., 1971, 19: 1327
|
25 |
Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
|
26 |
Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations [J]. Metall. Trans., 1976, 7A: 1905
|
27 |
Tian Y, Lin S, Ko J Y P, et al. Micromechanics and microstructure evolution during in situ uniaxial tensile loading of TRIP-assisted duplex stainless steels [J]. Mater. Sci. Eng., 2018, A734: 281
|
28 |
Olson G B, Cohen M. Stress-assisted isothermal martensitic transformation: Application to TRIP steels [J]. Metall. Trans., 1982, 13A: 1907
|
29 |
Lecroisey F, Pineau A. Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system [J]. Metall. Mater. Trans., 1972, 3B: 391
|
30 |
Murr L E, Staudhammer K P, Hecker S S. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study [J]. Metall. Trans., 1982, 13A: 627
|
31 |
Wang J L, Xi X H, Li Y, et al. New insights on nucleation and transformation process in temperature-induced martensitic transformation [J]. Mater. Charact., 2019, 151: 267
|
32 |
Wang J L, Huang M H, Xi X H, et al. Characteristics of nucleation and transformation sequence in deformation-induced martensitic transformation [J]. Mater. Charact., 2020, 163: 110234
|
33 |
Tian Y, Lienert U, Borgenstam A, et al. Martensite formation during incremental cooling of Fe-Cr-Ni alloys: An in-situ bulk X-ray study of the grain-averaged and single-grain behavior [J]. Scr. Mater. 2017, 136: 124
|
34 |
Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54: 1279
|
35 |
Jafarian H, Borhani E, Shibata A, et al. Variant selection of martensite transformation from ultrafine-grained austenite in Fe-Ni-C alloy [J]. J. Alloys Compd., 2013, 577: S668
|
36 |
Chiba T, Miyamoto G, Furuhara T. Variant selection of lenticular martensite by ausforming [J]. Scr. Mater., 2012, 67: 324
|
37 |
Tian Y, Borgenstam A, Hedström P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys [J]. J. Alloys Compd., 2018, 766: 131
|
38 |
Swarr T, Krauss G. The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy [J]. Metall. Trans., 1976, 7A: 41
|
39 |
Inoue T, Matsuda S, Okamura Y, et al. The fracture of a low carbon tempered martensite [J]. Trans. Japan Inst. Met., 1970, 11: 36
|
40 |
Kelly P M. The martensite transformation in steels with low stacking fault energy [J]. Acta Metall., 1965, 13: 635
|
41 |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
|
42 |
Schramm R E, Reed R P. Stacking fault energies of seven commercial austenitic stainless steels [J]. Metall. Trans., 1975, 6A: 1345
|
43 |
Cohen M, Olson G B. Martensitic nucleation and the role of the nucleation defect [J]. Suppl. Trans. JIM, 1976, 17: 93
|
44 |
Kaufman L, Cohen M. Thermodynamics and kinetics of martensitic transformations [J]. Prog. Met. Phys., 1958, 7: 165
|
45 |
Gu Q, van Humbeeck J, Delaey L. Review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys [J]. J. Phys. IV, 1994, 4: 135
|
46 |
Hoshino Y, Nakamura S, Ishikawa N, et al. In-situ observation of partial dislocation motion during γ→ε transformation in a Fe-Mn-Si Shape memory alloy [J]. Mater. Trans., JIM, 1992, 33: 253
|
47 |
Shimizu K, Oka M, Wayman C M. The association of martensite platelets with austenite stacking faults in an Fe-8Cr-1C alloy [J]. Acta Metall., 1970, 18: 1005
|
48 |
Sato A, Kasuga H, Mori T. Effect of external stress on the γ→ε→α martensitic transformation examined by a double tensile deformation [J]. Acta Metall., 1980, 28: 1223
|
49 |
Li X, Chen L Q, Zhao Y, et al. Influence of manganese content on ε-/α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Mater. Des., 2018, 142: 190
|
50 |
Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels [J]. Acta Mater., 2015, 84: 330
|
51 |
Pisarik S T, van Aken D C. Crystallographic orientation of the ε→α′ martensitic (athermal) transformation in a FeMnAlSi steel [J]. Metall. Mater. Trans., 2014, 45A: 3173
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|