|
|
磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响 |
原家华1, 张秋红2, 王金亮3, 王灵禺1, 王晨充1, 徐伟1( ) |
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 2.北京理工大学 材料学院 北京 100081 3.广东海洋大学 机械与动力工程学院 湛江 524088 |
|
Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection |
YUAN Jiahua1, ZHANG Qiuhong2, WANG Jinliang3, WANG Lingyu1, WANG Chenchong1, XU Wei1( ) |
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China 3.School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China |
引用本文:
原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
Jiahua YUAN,
Qiuhong ZHANG,
Jinliang WANG,
Lingyu WANG,
Chenchong WANG,
Wei XU.
Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. Acta Metall Sin, 2022, 58(12): 1570-1580.
1 |
Emadoddin E, Akbarzadeh A, Petrov R, et al. Anisotropy of retained austenite stability during transformation to martensite in a TRIP‐assisted steel [J]. Steel Res. Int., 2013, 84: 297
doi: 10.1002/srin.201200197
|
2 |
Zhou T P, Wang C Y, Wang C, et al. Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel [J]. Mater. Sci. Eng., 2020, A798: 140147
|
3 |
De Knijf D, Petrov R, Föjer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng., 2014, A615: 107
|
4 |
Samanta S, Das S, Chakrabarti D, et al. Development of multiphase microstructure with bainite, martensite, and retained austenite in a Co-containing steel through quenching and partitioning (Q&P) treatment [J]. Metall. Mater. Trans., 2013, 44A: 5653
|
5 |
Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn) [J]. Mater. Sci. Eng., 2012, A532: 435
|
6 |
Ren Y Q, Xie Z J, Shang C J. Regulation of retained austenite and its effect on the mechanical properties of low carbon steel [J]. Acta Metall. Sin., 2012, 48: 1074
doi: 10.3724/SP.J.1037.2012.00210
|
6 |
任勇强, 谢振家, 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响 [J]. 金属学报, 2012, 48: 1074
doi: 10.3724/SP.J.1037.2012.00210
|
7 |
Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
doi: 10.1016/j.actamat.2011.04.011
|
8 |
Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
doi: 10.1016/j.actamat.2018.01.033
|
9 |
Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing [J]. Scr. Mater., 2018, 154: 30
doi: 10.1016/j.scriptamat.2018.05.016
|
10 |
Yang F, Zhou J, Han Y, et al. A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation [J]. Mater. Lett., 2020, 258: 126804
|
11 |
Hu J, Cao W Q, Huang C X, et al. Characterization of microstructures and mechanical properties of cold-rolled medium-Mn Steels with different annealing processes [J]. ISIJ Int., 2015, 55: 2229
doi: 10.2355/isijinternational.ISIJINT-2015-187
|
12 |
Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel [J]. Acta Metall. Sin., 2016, 52: 224
doi: 10.11900/0412.1961.2015.00280
|
12 |
谢振家, 尚成嘉, 周文浩 等. 低合金多相钢中残余奥氏体对塑性和韧性的影响 [J]. 金属学报, 2016, 52: 224
doi: 10.11900/0412.1961.2015.00280
|
13 |
Chen S, Hu J, Shan L Y, et al. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels [J]. Mater. Sci. Eng., 2021, A803: 140706
|
14 |
Chen S, Wang C C, Shan L Y, et al. Revealing the conditions of bainitic transformation in quenching and partitioning steels [J]. Metall. Mater. Trans., 2019, 50A: 4037
|
15 |
Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
|
16 |
Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta Metall. Sin., 2020, 56: 459
doi: 10.11900/0412.1961.2019.00399
|
16 |
徐伟, 黄明浩, 王金亮 等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
doi: 10.11900/0412.1961.2019.00399
|
17 |
Kakeshita T, Shimizu K, Funada S, et al. Composition dependence of magnetic field-induced martensitic transformations in Fe-Ni alloys [J]. Acta Metall., 1985, 33: 1381
doi: 10.1016/0001-6160(85)90039-2
|
18 |
Fukuda T, Kakeshita T, Kindo K. Effect of high magnetic field and uniaxial stress at cryogenic temperatures on phase stability of some austenitic stainless steels [J]. Mater. Sci. Eng., 2006, A438-440: 212
|
19 |
Tanhaei S, Gheisari K, Zaree S R A. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel [J]. Int. J. Miner. Metall. Mater., 2018, 25: 630
doi: 10.1007/s12613-018-1610-y
|
20 |
Shrinivas V, Varma S K, Murr L E. Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling [J]. Metall. Mater. Trans., 1995, 26A: 661
|
21 |
Shi J T, Hou L G, Zuo J R, et al. Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel [J]. Acta Metall. Sin., 2016, 52: 945
doi: 10.11900/0412.1961.2015.00635
|
21 |
史金涛, 侯陇刚, 左锦荣 等. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征 [J]. 金属学报, 2016, 52: 945
doi: 10.11900/0412.1961.2015.00635
|
22 |
Wang J L, Wang C C, Huang M H, et al. The effects and mechanisms of pre-deformation with low strain on temperature-induced martensitic transformation [J]. Acta Metall. Sin., 2021, 57: 575
doi: 10.11900/0412.1961.2020.00292
|
22 |
王金亮, 王晨充, 黄明浩 等. 低应变预变形对变温马氏体相变行为的影响规律及作用机制 [J]. 金属学报, 2021, 57: 575
doi: 10.11900/0412.1961.2020.00292
|
23 |
Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel [J]. ISIJ Int., 2013, 53: 1224
doi: 10.2355/isijinternational.53.1224
|
24 |
Brofman P J, Ansell G S. On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys [J]. Metall. Trans., 1983, 14A: 1929
|
25 |
Koho K, Söderberg O, Lanska N, et al. Effect of the chemical composition to martensitic transformation in Ni-Mn-Ga-Fe alloys [J]. Mater. Sci. Eng., 2004, A378: 384
|
26 |
Song C H, Yu H, Li L L, et al. The stability of retained austenite at different locations during straining of I&Q&P steel [J]. Mater. Sci. Eng., 2016, A670: 326
|
27 |
Kakeshita T, Saburi T. Effects of magnetic field and hydrostatic pressure on martensitic transformation [J]. Met. Mater., 1997, 3: 87
doi: 10.1007/BF03026130
|
28 |
Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature [J]. Scr. Mater., 2009, 60: 493
doi: 10.1016/j.scriptamat.2008.11.043
|
29 |
Van Bohemen S M C, Morsdorf L. Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size [J]. Acta Mater., 2017, 125: 401
doi: 10.1016/j.actamat.2016.12.029
|
30 |
Wang J L, Xi X H, Li Y, et al. New insights on nucleation and transformation process in temperature-induced martensitic transformation [J]. Mater. Charact., 2019, 151: 267
doi: 10.1016/j.matchar.2019.03.023
|
31 |
Umemoto M, Owen W S. Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickel-carbon alloy [J]. Metall. Mater. Trans., 1974, 5B: 2041
|
32 |
Martin D S, van Dijk N H, Brück E, et al. The isothermal martensite formation in a maraging steel: A magnetic study [J]. Mater. Sci. Eng., 2008, A481-482: 757
|
33 |
Choi J Y, Fukuda T, Kakeshita T. Effect of magnetic field on successive γ→ε'→α' isothermal martensitic transformation in a SUS304L stainless steel [J]. Mater. Sci. Forum, 2010, 654-656: 130
doi: 10.4028/www.scientific.net/MSF.654-656.130
|
34 |
Celada-Casero C, Sietsma J, Santofimia M J. The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
|
35 |
Shibata K, Shimozono T, Kohno Y, et al. Effects of heat treatment, pre-strain and magnetic field on the formation of α martensite in Fe-25.5Ni-4Cr and 304L steels [J]. Mater. Trans., JIM, 2000, 41: 893
|
36 |
Shimozono T, Kohno Y, Konishi H, et al. Effects of pre-strain, heat treatments and magnetic fields on α' martensite formation in Fe-25.5%Ni-3-5%Cr alloys [J]. Mater. Sci. Eng., 1999, 273-275: 337
doi: 10.1016/S0921-5093(99)00425-6
|
37 |
Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel [J]. Mater. Trans., 2004, 45(7): 2245
doi: 10.2320/matertrans.45.2245
|
38 |
Xu Z Y. Martensitic transformation [J]. Heat Treat., 1999, (2): 1
|
38 |
徐祖耀. 马氏体相变 [J]. 热处理, 1999, (2): 1
|
39 |
Humbert M, Petit B, Bolle B, et al. Analysis of the γ-ɛ-α′ variant selection induced by 10% plastic deformation in 304 stainless steel at -60oC [J]. Mater. Sci. Eng., 2007, A454-455: 508
|
40 |
Rodríguez-Martínez J A, Rusinek A, Pesci R, et al. Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles [J]. Int. J. Solids Struct., 2013, 50: 339
doi: 10.1016/j.ijsolstr.2012.09.019
|
41 |
Tian Y, Borgenstam A, Hedström P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys [J]. J. Alloys Compd., 2018, 766: 131
doi: 10.1016/j.jallcom.2018.06.326
|
42 |
Wu B B, Wang Z Q, Wang X L, et al. Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs [J]. Mater. Sci. Eng., 2019, A759: 430
|
43 |
Inoue T, Matsuda S, Okamura Y, et al. The fracture of a low carbon tempered martensite [J]. Trans. Jpn. Inst. Met., 1970, 11: 36
doi: 10.2320/matertrans1960.11.36
|
44 |
Celada-Casero C, Kwakernaak C, Sietsma J, et al. The influence of the austenite grain size on the microstructural development during quenching and partitioning processing of a low-carbon steel [J]. Mater. Des., 2019, 178: 107847
|
45 |
Li, Y, Martín D S, Wang, J L, et al. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91: 200
doi: 10.1016/j.jmst.2021.03.020
|
46 |
Liu F, Sommer F, Bos C, et al. Analysis of solid state phase transformation kinetics models and recipes [J]. Int. Mater. Rev., 2007, 52: 193
doi: 10.1179/174328007X160308
|
47 |
Lecroisey F, Pineau A. Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system [J]. Metall. Mater. Trans., 1972, 3B: 391
|
48 |
Raghavan V, Cohen M. A nucleation model for martensitic transformations in iron-base alloys [J]. Acta Metall., 1972, 20: 333
doi: 10.1016/0001-6160(72)90025-9
|
49 |
Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. ISIJ Int., 2005, 45: 91
doi: 10.2355/isijinternational.45.91
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|