Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1570-1580    DOI: 10.11900/0412.1961.2021.00204
  研究论文 本期目录 | 过刊浏览 |
磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响
原家华1, 张秋红2, 王金亮3, 王灵禺1, 王晨充1, 徐伟1()
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.北京理工大学 材料学院 北京 100081
3.广东海洋大学 机械与动力工程学院 湛江 524088
Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection
YUAN Jiahua1, ZHANG Qiuhong2, WANG Jinliang3, WANG Lingyu1, WANG Chenchong1, XU Wei1()
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
3.School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
引用本文:

原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
Jiahua YUAN, Qiuhong ZHANG, Jinliang WANG, Lingyu WANG, Chenchong WANG, Wei XU. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. Acta Metall Sin, 2022, 58(12): 1570-1580.

全文: PDF(4565 KB)   HTML
摘要: 

以SUS321不锈钢为实验材料,探究了300~4 K连续冷却过程中,磁场作用下晶粒尺寸对变温马氏体相变行为的影响规律及作用机制。结果表明,相同的晶粒尺寸下,马氏体开始转变温度、最终转变量均随磁场强度的增加而增加。在相同的强磁场强度下,随着晶粒尺寸的增加,存在最为明显的促进马氏体生成的临界晶粒尺寸,加速整个连续冷却过程中的马氏体相变。组织观察表明:磁场作用能有效促进温度诱发ε-马氏体相变的形核质点的形成,进而提高连续冷却过程中α'-马氏体相变的形核质点数量,促进α'-马氏体相变。从相变机理方面进一步完善了前人提出的磁场加速马氏体相变的表象研究结果。此外,通过对组织形貌和晶体学特征分析,揭示磁场作用虽然促进温度诱发ε-马氏体相变的形核质点的形成,但是对γε-马氏体变体选择影响不敏感,而晶粒尺寸对其敏感性较高。在磁场作用下,随着晶粒尺寸增大,ε变体的各向异性逐渐转变为各向同性,各项同性的ε-马氏体的形核质点长大过程中加速硬碰撞,使得晶粒尺寸较大时,马氏体相变受到抑制。ε变体进一步相变时,εα'-马氏体变体选择对晶粒尺寸和磁场敏感性均不高。

关键词 磁场马氏体相变深冷处理奥氏体不锈钢晶粒尺寸    
Abstract

Extrinsic (magnetic fields) and intrinsic (austenite grain sizes) factors can effectively control the martensitic transformation. Until now, research has mainly focused on the separate effects of magnetic fields and austenite grain sizes on the kinetics of the martensitic transformation. Systematic studies considering the coupling effects of magnetic fields and austenite grain sizes on the temperature at which martensite is formed (Ms), the final volume fraction of the transformed martensite, and the kinetics of the martensitic transformation during continuous cooling are still lacking. Furthermore, no study has yet been reported on the mechanism underlying how magnetic fields and austenite grain sizes affect the martensitic transformation. In this study, SUS321 stainless steel is used to investigate the effect of grain size on the kinetics and mechanisms of the martensitic transformation during continuous cooling from 300 K to 4 K under various magnetic fields by using the physical property measurement system (PPMS). The results show that at a constant grain size, the Ms temperature and the final amount of martensite increase as a function of the magnetic field magnitude. Under the same magnetic field, a critical austenite grain size exists, which obviously accelerates the martensitic transformation during cooling. Detailed microstructural characterizations also show that the external magnetic field effectively promotes the formation of ε nucleation sites, which consequently enhances the nucleation rate of α′-martensite and its transformation during further cooling. These findings provide mechanistic insights into the previously found phenomenological results. Additionally, in-depth crystallographic analyses also demonstrate that although the magnetic field promotes ε nucleation, the variant selection during the γε transformation is insensitive to the magnetic field magnitude, unlike the austenite grain size. Under the same magnetic field, the increase in the austenite grain size results in more ε variants during cooling. The collision of similar ε variants restricts the growth of martensite laths and retards the martensitic transformation in coarse-grained austenite. The variant selection of the final transformation εα′ is insensitive to the magnetic field magnitude and the austenite grain size.

Key wordsmagnetic field    martensitic transformation    cryogenic treatment    austenitic stainless steel    grain size
收稿日期: 2021-05-17     
ZTFLH:  TG111.5  
基金资助:国家自然科学基金项目(U1808208);国家自然科学基金项目(51961130389);国家自然科学基金项目(52011530032)
作者简介: 原家华,女,1996年生,博士
图1  50%冷轧板经不同温度退火30 min后的显微组织OM像及平均晶粒尺寸统计结果
图2  在1和9 T磁场下不同晶粒尺寸SUS321不锈钢试样在降温过程中α′-马氏体的含量变化曲线
图3  不同晶粒尺寸SUS321不锈钢施加1和9 T磁场作用经连续冷却处理后显微组织的EBSD相图
图4  晶粒尺寸为29.3 μm的组织中ε-马氏体的反极图
图5  不同晶粒尺寸的SUS321不锈钢在1 T和9 T磁场作用下连续冷却处理后显微组织的ECCI衬度图
图6  不同晶粒尺寸奥氏体不锈钢在磁场作用下组织中α′-马氏体的反极图和极图
图7  1和9 T磁场作用下晶粒尺寸为29.3 μm的显微组织的相图及晶界的晶体学信息
1 Emadoddin E, Akbarzadeh A, Petrov R, et al. Anisotropy of retained austenite stability during transformation to martensite in a TRIP‐assisted steel [J]. Steel Res. Int., 2013, 84: 297
doi: 10.1002/srin.201200197
2 Zhou T P, Wang C Y, Wang C, et al. Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel [J]. Mater. Sci. Eng., 2020, A798: 140147
3 De Knijf D, Petrov R, Föjer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng., 2014, A615: 107
4 Samanta S, Das S, Chakrabarti D, et al. Development of multiphase microstructure with bainite, martensite, and retained austenite in a Co-containing steel through quenching and partitioning (Q&P) treatment [J]. Metall. Mater. Trans., 2013, 44A: 5653
5 Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn) [J]. Mater. Sci. Eng., 2012, A532: 435
6 Ren Y Q, Xie Z J, Shang C J. Regulation of retained austenite and its effect on the mechanical properties of low carbon steel [J]. Acta Metall. Sin., 2012, 48: 1074
doi: 10.3724/SP.J.1037.2012.00210
6 任勇强, 谢振家, 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响 [J]. 金属学报, 2012, 48: 1074
doi: 10.3724/SP.J.1037.2012.00210
7 Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
doi: 10.1016/j.actamat.2011.04.011
8 Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
doi: 10.1016/j.actamat.2018.01.033
9 Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing [J]. Scr. Mater., 2018, 154: 30
doi: 10.1016/j.scriptamat.2018.05.016
10 Yang F, Zhou J, Han Y, et al. A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation [J]. Mater. Lett., 2020, 258: 126804
11 Hu J, Cao W Q, Huang C X, et al. Characterization of microstructures and mechanical properties of cold-rolled medium-Mn Steels with different annealing processes [J]. ISIJ Int., 2015, 55: 2229
doi: 10.2355/isijinternational.ISIJINT-2015-187
12 Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel [J]. Acta Metall. Sin., 2016, 52: 224
doi: 10.11900/0412.1961.2015.00280
12 谢振家, 尚成嘉, 周文浩 等. 低合金多相钢中残余奥氏体对塑性和韧性的影响 [J]. 金属学报, 2016, 52: 224
doi: 10.11900/0412.1961.2015.00280
13 Chen S, Hu J, Shan L Y, et al. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels [J]. Mater. Sci. Eng., 2021, A803: 140706
14 Chen S, Wang C C, Shan L Y, et al. Revealing the conditions of bainitic transformation in quenching and partitioning steels [J]. Metall. Mater. Trans., 2019, 50A: 4037
15 Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
16 Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta Metall. Sin., 2020, 56: 459
doi: 10.11900/0412.1961.2019.00399
16 徐伟, 黄明浩, 王金亮 等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
doi: 10.11900/0412.1961.2019.00399
17 Kakeshita T, Shimizu K, Funada S, et al. Composition dependence of magnetic field-induced martensitic transformations in Fe-Ni alloys [J]. Acta Metall., 1985, 33: 1381
doi: 10.1016/0001-6160(85)90039-2
18 Fukuda T, Kakeshita T, Kindo K. Effect of high magnetic field and uniaxial stress at cryogenic temperatures on phase stability of some austenitic stainless steels [J]. Mater. Sci. Eng., 2006, A438-440: 212
19 Tanhaei S, Gheisari K, Zaree S R A. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel [J]. Int. J. Miner. Metall. Mater., 2018, 25: 630
doi: 10.1007/s12613-018-1610-y
20 Shrinivas V, Varma S K, Murr L E. Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling [J]. Metall. Mater. Trans., 1995, 26A: 661
21 Shi J T, Hou L G, Zuo J R, et al. Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel [J]. Acta Metall. Sin., 2016, 52: 945
doi: 10.11900/0412.1961.2015.00635
21 史金涛, 侯陇刚, 左锦荣 等. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征 [J]. 金属学报, 2016, 52: 945
doi: 10.11900/0412.1961.2015.00635
22 Wang J L, Wang C C, Huang M H, et al. The effects and mechanisms of pre-deformation with low strain on temperature-induced martensitic transformation [J]. Acta Metall. Sin., 2021, 57: 575
doi: 10.11900/0412.1961.2020.00292
22 王金亮, 王晨充, 黄明浩 等. 低应变预变形对变温马氏体相变行为的影响规律及作用机制 [J]. 金属学报, 2021, 57: 575
doi: 10.11900/0412.1961.2020.00292
23 Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel [J]. ISIJ Int., 2013, 53: 1224
doi: 10.2355/isijinternational.53.1224
24 Brofman P J, Ansell G S. On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys [J]. Metall. Trans., 1983, 14A: 1929
25 Koho K, Söderberg O, Lanska N, et al. Effect of the chemical composition to martensitic transformation in Ni-Mn-Ga-Fe alloys [J]. Mater. Sci. Eng., 2004, A378: 384
26 Song C H, Yu H, Li L L, et al. The stability of retained austenite at different locations during straining of I&Q&P steel [J]. Mater. Sci. Eng., 2016, A670: 326
27 Kakeshita T, Saburi T. Effects of magnetic field and hydrostatic pressure on martensitic transformation [J]. Met. Mater., 1997, 3: 87
doi: 10.1007/BF03026130
28 Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature [J]. Scr. Mater., 2009, 60: 493
doi: 10.1016/j.scriptamat.2008.11.043
29 Van Bohemen S M C, Morsdorf L. Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size [J]. Acta Mater., 2017, 125: 401
doi: 10.1016/j.actamat.2016.12.029
30 Wang J L, Xi X H, Li Y, et al. New insights on nucleation and transformation process in temperature-induced martensitic transformation [J]. Mater. Charact., 2019, 151: 267
doi: 10.1016/j.matchar.2019.03.023
31 Umemoto M, Owen W S. Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickel-carbon alloy [J]. Metall. Mater. Trans., 1974, 5B: 2041
32 Martin D S, van Dijk N H, Brück E, et al. The isothermal martensite formation in a maraging steel: A magnetic study [J]. Mater. Sci. Eng., 2008, A481-482: 757
33 Choi J Y, Fukuda T, Kakeshita T. Effect of magnetic field on successive γ→ε'→α' isothermal martensitic transformation in a SUS304L stainless steel [J]. Mater. Sci. Forum, 2010, 654-656: 130
doi: 10.4028/www.scientific.net/MSF.654-656.130
34 Celada-Casero C, Sietsma J, Santofimia M J. The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
35 Shibata K, Shimozono T, Kohno Y, et al. Effects of heat treatment, pre-strain and magnetic field on the formation of α martensite in Fe-25.5Ni-4Cr and 304L steels [J]. Mater. Trans., JIM, 2000, 41: 893
36 Shimozono T, Kohno Y, Konishi H, et al. Effects of pre-strain, heat treatments and magnetic fields on α' martensite formation in Fe-25.5%Ni-3-5%Cr alloys [J]. Mater. Sci. Eng., 1999, 273-275: 337
doi: 10.1016/S0921-5093(99)00425-6
37 Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel [J]. Mater. Trans., 2004, 45(7): 2245
doi: 10.2320/matertrans.45.2245
38 Xu Z Y. Martensitic transformation [J]. Heat Treat., 1999, (2): 1
38 徐祖耀. 马氏体相变 [J]. 热处理, 1999, (2): 1
39 Humbert M, Petit B, Bolle B, et al. Analysis of the γ-ɛ-α′ variant selection induced by 10% plastic deformation in 304 stainless steel at -60oC [J]. Mater. Sci. Eng., 2007, A454-455: 508
40 Rodríguez-Martínez J A, Rusinek A, Pesci R, et al. Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles [J]. Int. J. Solids Struct., 2013, 50: 339
doi: 10.1016/j.ijsolstr.2012.09.019
41 Tian Y, Borgenstam A, Hedström P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys [J]. J. Alloys Compd., 2018, 766: 131
doi: 10.1016/j.jallcom.2018.06.326
42 Wu B B, Wang Z Q, Wang X L, et al. Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs [J]. Mater. Sci. Eng., 2019, A759: 430
43 Inoue T, Matsuda S, Okamura Y, et al. The fracture of a low carbon tempered martensite [J]. Trans. Jpn. Inst. Met., 1970, 11: 36
doi: 10.2320/matertrans1960.11.36
44 Celada-Casero C, Kwakernaak C, Sietsma J, et al. The influence of the austenite grain size on the microstructural development during quenching and partitioning processing of a low-carbon steel [J]. Mater. Des., 2019, 178: 107847
45 Li, Y, Martín D S, Wang, J L, et al. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91: 200
doi: 10.1016/j.jmst.2021.03.020
46 Liu F, Sommer F, Bos C, et al. Analysis of solid state phase transformation kinetics models and recipes [J]. Int. Mater. Rev., 2007, 52: 193
doi: 10.1179/174328007X160308
47 Lecroisey F, Pineau A. Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system [J]. Metall. Mater. Trans., 1972, 3B: 391
48 Raghavan V, Cohen M. A nucleation model for martensitic transformations in iron-base alloys [J]. Acta Metall., 1972, 20: 333
doi: 10.1016/0001-6160(72)90025-9
49 Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. ISIJ Int., 2005, 45: 91
doi: 10.2355/isijinternational.45.91
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[7] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[8] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[9] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[10] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[11] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[12] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[13] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[14] 栾晓圣, 梁志强, 赵文祥, 石贵红, 李宏伟, 刘心藜, 祝国荣, 王西彬. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280.
[15] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.