Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 67-74    DOI: 10.11900/0412.1961.2020.00496
  研究论文 本期目录 | 过刊浏览 |
不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为
曹超1, 蒋成洋1(), 鲁金涛2(), 陈明辉1, 耿树江1, 王福会1
1. 东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2. 西安热工研究院有限公司 电站清洁燃烧国家工程研究中心 西安 710032
Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment
CAO Chao1, JIANG Chengyang1(), LU Jintao2(), CHEN Minghui1, GENG Shujiang1, WANG Fuhui1
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2. National Energy R&D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi'an Thermal Power Research Institute Co. , Ltd. , Xi'an 710032, China
引用本文:

曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
Chao CAO, Chengyang JIANG, Jintao LU, Minghui CHEN, Shujiang GENG, Fuhui WANG. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. Acta Metall Sin, 2022, 58(1): 67-74.

全文: PDF(3599 KB)   HTML
摘要: 

研究了3种不同Cr含量(质量分数)的奥氏体不锈钢在700℃下煤灰/高硫烟气环境中的腐蚀行为。结果表明,低Cr合金(19.13%)腐蚀最为严重,氧化膜由外层Fe2O3、内层Cr2O3及CrS组成,外层氧化膜剥落严重;中Cr合金(22.78%)氧化膜结构与低Cr合金类似,但腐蚀程度更轻;高Cr合金(24.00%)表面形成了稳定而致密的Cr2O3层,表现出比其他2种合金更好的抗高温腐蚀性。合金中的NbC会被氧化成Nb2O5分布在氧化膜中,Nb2O5的形成会破坏氧化膜的完整性,导致氧化膜更容易发生开裂。

关键词 高温腐蚀奥氏体不锈钢煤灰/高硫烟气硫化/氧化    
Abstract

With the rapid increase in thermal power generation units in China, the thermal power generation industry is facing pressures such as reducing costs, improving power generation efficiency and mitigating environmental problems. Thermal power generation units with a large capacity and high parameters result in high system efficiency, but they also amplify the corrosion failure problem of high-temperature components, especially the atmosphere/ash corrosion of outer tubes. Many studies regarding flue gas corrosion have shown that molten alkali metal sulfate can form on the surface of pipelines, causing severe corrosion damage, and the extent of corrosion is closely related to the sulfur content in raw coal. However, much attention has been paid to low-sulfur (standard coal combustion) environments in previous studies, with very few studies on high-sulfur environments. Austenitic stainless steels possessing a combination of excellent high temperature corrosion and fatigue resistances, are considered as promising construction materials for high temperature components in supercritical and ultra-supercritical fossil fuel power plants. Elements such as Cr and Nb have been shown to greatly affect the high temperature corrosion resistance of austenitic stainless steels; however few reports are available regarding the effect of Cr on corrosion resistance in high-sulfur flue gas environments and the effect of Nb on the corrosion resistance of Cr2O3-forming alloys. Therefore, in this study, the corrosion behavior of three types of austenitic stainless steels with different Cr contents was studied in a coal ash/high-sulfur flue gas environment at 700oC. Results showed that low Cr alloys formed a two-layered structure: an external Fe2O3 layer and an internal layer with Cr2O3 and CrS. Medium Cr alloys developed a similar structure oxide scale to low Cr concentration alloys, but the corrosion extent was modest. Conversely, a stable and dense Cr2O3 layer was formed on the surface of the high Cr alloys, showing higher corrosion resistance than the other two alloys. The Nb in the alloys had some influence on the corrosion resistance of the alloys. The NbC in the alloys oxidized to Nb2O5 and distributed in the oxide scale. The formation of Nb2O5 destroyed the integrity of the oxide scale and led to the easy cracking of the oxide scale.

Key wordshigh temperature corrosion    austenitic stainless steel    coal-ash/high sulfur flue-gas    sulfidation/oxidation
收稿日期: 2020-12-08     
ZTFLH:  TG174.44  
基金资助:国家重点研发计划项目(2019YFF0217500);辽宁省优秀青年基金项目(2019-YQ-03);中国华能集团有限公司科技项目(HNKJ20-H43)
作者简介: 曹 超,男,1994年生,硕士
Alloy Ni Cr Mn Nb Si N C B P Co Fe
Low Cr 19.41 19.13 0.40 6.23 1.19 0.13 0.13 0.002 0.018 4.74 Bal.
Medium Cr 20.31 22.78 0.61 1.04 1.20 0.19 0.092 0.002 0.03 1.02 Bal.
High Cr 19.20 24.00 0.45 1.41 0.58 0.18 0.10 0.002 0.02 2.30 Bal.
表1  3种试样的化学成分 (mass fraction / %)
图1  模拟煤灰/烟气腐蚀实验装置示意图
图2  3种样品在700℃下腐蚀1000 h的质量变化曲线
图3  3种样品在700℃下腐蚀1000 h后的XRD谱
图4  3种样品在700℃腐蚀1000 h后的表面形貌
图5  3种样品在700℃腐蚀1000 h后的截面形貌
图6  低Cr合金在700℃腐蚀1000 h后的背散射电子像(BEI)及EPMA面扫结果
图7  中Cr合金在700℃腐蚀1000 h后的BEI及EPMA面扫结果
图8  高Cr合金在700℃腐蚀1000 h后的BEI及EPMA面扫结果
1 Lin F S , Wang Z Z , Wang B Z , et al . Research, application and development of domestic heat-resistant steels and alloys for power plants [J]. J. Chin. Soc. Power Eng., 2010, 30: 235
1 林富生, 王治政, 王宝忠 等 . 中国电站用耐热钢及合金的研制、应用与发展 [J]. 动力工程学报, 2010, 30: 235
2 Viswanathan R , Coleman K , Rao U . Materials for ultra-supercritical coal-fired power plant boilers [J]. Int. J. Press. Vessels Pip., 2006, 83: 778
3 Xu J , Zhou Y G . The development of 700oC USC technology [J]. Sino-Glob. Energy, 2012, 17(6): 13
3 徐 炯, 周一工 . 700℃高效超超临界技术的发展 [J]. 中外能源, 2012, 17(6): 13
4 Huang L Q , Liu G M , Zhang M Q , et al . Corrosion behavior of Super304H and HR3C austenitic steels in simulated flue-gas boiler environments with high sulfur concentration [J]. Trans. Mater. Heat Treat., 2017, 38(9): 155
4 黄丽琴, 刘光明, 张民强 等 . Super304H和HR3C奥氏体钢在模拟锅炉高硫气氛中的腐蚀行为 [J]. 材料热处理学报, 2017, 38(9): 155
5 Liu G M , Yang H C , Liang Q , et al . Corrosion behavior of the Ni-Cr-Fe base superalloy GH984G in a synthetic coal ash and flue gas environment [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 863
6 Lu J T , Yang Z , Li Y , et al . Fireside corrosion behaviors of Super304H and HR3C in coal ash/gas environment with different SO2 contents at 650oC [J]. J. Mater. Eng. Perform., 2018, 27: 2855
7 Yu C , Zhang J Q , Young D J . Corrosion behaviour of Fe-C-(Mn, Si) ferritic alloys in wet and dry CO2-SO2 atmospheres at 650oC [J]. Oxid. Met., 2018, 90: 97
8 Wright I G , Shingledecker J P . Rates of fireside corrosion of superheater and reheater tubes: Making sense of available data [J]. Mater. High Temp., 2015, 32: 426
9 Natesan K , Park J H . Fireside and steamside corrosion of alloys for USC plants [J]. Int. J. Hydrogen Energy, 2007, 32: 3689
10 Becker S , Schütze M , Rahmel A . Cyclic-oxidation behavior of TiAl and of TiAl alloys [J]. Oxid. Met., 1993, 39: 93
11 Lin J P , Zhao L L , Li G Y , et al . Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
12 Jiang H R , Hirohasi M , Lu Y , et al . Effect of Nb on the high temperature oxidation of Ti-(0-50 at.%)Al [J]. Scr. Mater., 2002, 46: 639
13 Brady M P , Wright I G , Gleeson B . Alloy design strategies for promoting protective oxide-scale formation [J]. JOM, 2000, 52(1): 16
14 Brady M P , Yamamoto Y , Santella M L , et al . Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels [J]. Scr. Mater., 2007, 57: 1117
15 Haanappel V A C , Sunderkötter J D , Stroosnijder M F . The isothermal and cyclic high temperature oxidation behaviour of Ti-48Al-2Mn-2Nb compared with Ti-48Al-2Cr-2Nb and Ti-48Al-2Cr [J]. Intermetallics, 1999, 7: 529
16 Zhu Y C , Zhang Y , Li X Y , et al . The effect of niobium-ion implantation on the oxidation behavior of γ-TiAl alloys in static and flowing air [J]. Oxid. Met., 2001, 55: 119
17 Hong J E . Experimental study of high temperature corrosion behavior of T91 in SO2 gas mixture [J]. East China Elec. Power, 2005, 33(1): 65
17 洪景娥 . T91钢在含SO2混合气体中高温腐蚀行为试验研究 [J]. 华东电力, 2005, 33(1): 65
18 Hussain T , Simms N J , Nicholls J R , et al . Fireside corrosion degradation of HVOF thermal sprayed FeCrAl coating at 700-800oC [J]. Surf. Coat. Technol., 2015, 268: 165
19 Zeng Z , Natesan K , Cai Z , et al . Effect of coal ash on the performance of alloys in simulated oxy-fuel environments [J]. Fuel, 2014, 117: 133
20 Viswanathan R , Henry J F , Tanzosh J , et al . U.S. program on materials technology for ultra-supercritical coal power plants [J]. J. Mater. Eng. Perform., 2005, 14: 281
21 Wagner C, Reaktionstypen bei der oxydation von legierungen [J]. Phys. Chem., 1959, 63: 772
22 Rapp R A, The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta. Metall., 1961, 9: 730
23 Trindade V , Christ H J , Krupp U . Grain-size effects on the high-temperature oxidation behaviour of chromium steels [J]. Oxid. Met., 2010, 73: 551
24 Yang S S , Yang L L , Chen M H , et al . Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
25 Wagner C . Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
26 Li T F . High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 206
26 李铁藩 . 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 206
27 Banu A , Marcu M , Petrescu S , et al . Effect of niobium alloying level on the oxidation behavior of titanium aluminides at 850oC [J]. Int. J. Miner. Metall. Mater., 2016, 23: 1452
28 Zhang L B , Wang K Z , Xu L J , et al . Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti-Mo alloys [J]. Trans. Nonferr. Metal. Soc. China, 2015, 25: 2214
29 Fabas A , Put A R V , Doublet S , et al . Metal dusting corrosion of austenitic alloys at low and high pressure with the effects of Cr, Al, Nb and Cu [J]. Corros. Sci., 2017, 123: 310
30 Fang F , Lan M F , Lu X , et al . The impact of niobium on the microstructure, texture and magnetic properties of strip-cast grain oriented silicon steel [J]. J. Magn. Magn. Mater., 2017, 442: 1
31 Kobayashi T , Koizumi Y , Harada Y , et al . Influence of alloying elements on the creep strength of a 5th generation single crystal superalloy TMS-173 [J]. J. Jpn. Inst. Met. Mater., 2005, 69: 241
32 Xu Y X , Yan J B , Sun F , et al . Effect of further alloying elements on corrosion resistance of Ni-Cr alloys in molten glass [J]. Corros. Sci., 2016, 112: 647
33 Seo H S , Yun D W , Kim K Y . Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect [J]. Int. J. Hydrogen Energy, 2013, 38: 2432
34 Xia D X . Application of Nb in the modern ferritic stainless steel [J]. Shandong Sci., 2019, 32(1): 57
34 夏佃秀 . Nb在现代铁素体不锈钢中的应用研究进展 [J]. 山东科学, 2019, 32(1): 57
35 DeArdo A J . Latest development of IF steel and ferritic stainless steel in North America [A]. Beijing: China Iron and Steel Research Institute, 1999: 109
35 DeArdo A J . 北美IF钢和铁素体不锈钢的最新进展 [A]. 铌钢和铌合金——中国-巴西学术研讨会会议论文集 [C]. 北京: 中国钢铁研究总院, 1999: 109
36 Li X , Liu H L , Bi H Y , et al . Oxidation behavior of 18CrNb ferritic stainless steel at elevated temperatures [J]. Chin. J. Mater. Res., 2016, 30: 263
36 李 鑫, 刘后龙, 毕洪运 等 . 中铬铁素体不锈钢18CrNb高温氧化行为 [J]. 材料研究学报, 2016, 30: 263
37 Xu Y X , Gu Y F , Yan J B , et al . Oxidation behavior of Ni-based alloys: Effect of alloying additions [J]. Corrosion, 2017, 73: 247
38 Li M S , Zhang Y M . A review on effect of reactive elements on oxidation of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 333
38 李美栓, 张亚明 . 活性元素对合金高温氧化的作用机制 [J]. 腐蚀科学与防护技术, 2001, 13: 333
39 Xu Y X , Lu J T , Yang X W , et al . Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000oC [J]. Corros. Sci., 2017, 127: 10
40 Barin I , translated by Cheng N L , Niu S T , Xu G Y , et al . Thermochemical Data of Pure Substances [M]. Beijing: Science Press, 2003: 563
40 Barin I著, 程乃良, 牛四通, 徐桂英等译. 纯物质热化学数据手册 [M]. 北京: 科学出版社, 2003: 563
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[6] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[11] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[12] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[13] 郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.
[14] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.