Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 749-756    DOI: 10.11900/0412.1961.2020.00310
  研究论文 本期目录 | 过刊浏览 |
变形对超高强贝氏体钢组织和力学性能的影响
刘曼1,2, 胡海江1,2(), 田俊羽1,2, 徐光1,2
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验 武汉 430081
2.武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081
Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel
LIU Man1,2, HU Haijiang1,2(), TIAN Junyu1,2, XU Guang1,2
1.State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
Man LIU, Haijiang HU, Junyu TIAN, Guang XU. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. Acta Metall Sin, 2021, 57(6): 749-756.

全文: PDF(7172 KB)   HTML
摘要: 

采用低温奥氏体预变形+等温贝氏体相变相结合的工艺,研究了变形对中碳贝氏体钢相变和组织的影响,利用热模拟实验、SEM、TEM、XRD和拉伸实验等分析了变形影响残余奥氏体的微观机理及其对强塑性的影响规律。结果表明,过冷奥氏体在300℃变形20%,不仅可以加速随后等温贝氏体相变,细化贝氏体组织,同时还能增加室温组织中的残余奥氏体及其稳定性。残余奥氏体稳定性同时受C含量和位错密度影响,延长等温时间可以增加奥氏体中C含量;变形可以使奥氏体中位错密度增加,有利于获得稳定性较高的残余奥氏体,从而优化超高强贝氏体钢综合性能,制备的中碳超高强贝氏体钢抗拉强度为1733 MPa,延伸率达到15.7%。

关键词 贝氏体钢残余奥氏体奥氏体预变形显微组织力学性能    
Abstract

Ultra-high-strength bainitic steels with excellent combinations of strength and ductility may be the new generation of metallurgical interest. However, there still exist some production problems, such as long transformation times due to low-temperature processing and difficulty in tailoring the elongation. In this work, both ausforming and austempering were used to investigate the effects of deformation on the transformation and microstructure in a medium-carbon bainitic steel. The Gleeble 3500 simulator, SEM, TEM, XRD, and tensile tests were used to analyze the effects of ausforming on retained austenite, the strength and plasticity of bainitic steel. The results show that ausforming at 300oC with a strain of 0.2 not only accelerates the kinetics of isothermal transformation, but also refines the bainitic microstructure and optimizes the retained austenite and its stability. The stability of the retained austenite is affected by the carbon content and dislocation density, and the carbon content can be increased by prolonging the duration of the isothermal stage. The volume fraction of retained austenite is increased by ausforming because of the enhanced dislocation density, which leads to ultra-high-strength bainitic steel with excellent properties of a tensile strength of 1733 MPa and ductility of 15.7%.

Key wordsbainitic steel    retained austenite    ausforming    microstructure    mechanical property
收稿日期: 2020-08-17     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51704217);湖北省技术创新专项重大项目(2017AAA116)
作者简介: 刘 曼,女,1994年生,博士生
图1  热模拟实验工艺示意图
图2  变形前后试样的室温SEM像
图3  变形前后试样的TEM像
图4  变形前后试样等温期间相对膨胀量变化
图5  变形前后试样的贝氏体相变速率曲线
图6  变形前后试样的XRD谱
Sampleσs / MPaσp / MPaδ / %PSE / (GPa·%)
Non-deformed1041 ± 321507 ± 3413.1 ± 0.919.7
Deformed1358 ± 341733 ± 3815.7 ± 0.927.2
表1  变形前后试样的拉伸实验结果
1 Bhadeshia H K D H. Bainite in Steels [M]. 3rd Ed., London: CRC Press, 2015: 311
2 Bhadeshia H K D H. Nanostructured bainite [J]. Proc. R. Soc., 2010, 466A: 3
3 García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 495
4 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Mater. Sci. Technol., 2002, 18: 279
5 Chen X W, Qiao G Y, Han X L, et al. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels [J]. Mater. Des., 2014, 53: 888
6 Han Y, Kuang S, Liu H S, et al. Effect of chromium on microstructure and mechanical properties of cold rolled hot-dip galvanizing DP450 steel [J]. J. Iron Steel Res. Int., 2015, 22: 1055
7 Hu F, Wu K M, Zheng H. Influence of Co and Al on bainitic transformation in super bainitic steels [J]. Steel Res. Int., 2013, 84: 1060
8 Hu F, Wu K M, Hou T P, et al. Effect of tempering temperature on the microstructure and hardness of a super-bainitic steel containing Co and Al [J]. ISIJ Int., 2014, 54: 926
9 Kammouni A, Saikaly W, Dumont M, et al. Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels [J]. Mater. Sci. Eng., 2009, A518: 89
10 Hu F, Hodgson P D, Wu K M. Acceleration of the super bainite transformation through a coarse austenite grain size [J]. Mater. Lett., 2014, 122: 240
11 Long X Y, Zhang F C, Kang J, et al. Low-temperature bainite in low-carbon steel [J]. Mater. Sci. Eng., 2014, A594: 344
12 Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates [J]. Mater. Sci. Eng., 2006, A438-440: 145
13 Wang X L, Wu K M, Hu F, et al. Multi-step isothermal bainitic transformation in medium-carbon steel [J]. Scr. Mater., 2014, 74: 56
14 Bhadeshia H K D H. Thermodynamic analysis of isothermal transformation diagrams [J]. Metall. Sci., 1982, 16: 159
15 Xia Y, Miyamoto G, Yang Z G, et al. Direct measurement of carbon enrichment in the incomplete bainite transformation in Mo added low carbon steels [J]. Acta Mater., 2015, 91: 10
16 Wu H D, Miyamoto G, Yang Z G, et al. Incomplete bainite transformation accompanied with cementite precipitation in Fe-1.5(3.0)%Si-0.4%C alloys [J]. Acta Metall. Sin., 2018, 54: 367
16 武慧东, 宫本吾郎, 杨志刚等. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出 [J]. 金属学报, 2018, 54: 367
17 Gong W, Tomota Y, Adachi Y, et al. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel [J]. Acta Mater., 2013, 61: 4142
18 Kundu S, Verma A K, Sharma V. Quantitative analysis of variant selection for displacive transformations under stress [J]. Metall. Mater. Trans., 2012, 43A: 2552
19 Beladi H, Tari V, Timokhina I B, et al. On the crystallographic characteristics of nanobainitic steel [J]. Acta Mater., 2017, 127: 426
20 Xu S X, Yu W, Li S J, et al. Effects of pre-deformation temperature on nanobainite transformation kinetics and microstructure [J]. Acta Metall. Sin., 2018, 54: 1113
20 徐士新, 余 伟, 李舒笳等. 预变形温度对纳米贝氏体相变动力学及组织的影响 [J]. 金属学报, 2018, 54: 1113
21 Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite [J]. ISIJ Int., 2003, 43: 1821
22 Cornide J, Miyamoto G, Caballero F G, et al. Distribution of dislocations in nanostructured bainite [J]. Solid State Phenom., 2011, 172-174: 117
23 Eres-Castellanos A, Morales-Rivas L, Latz A, et al. Effect of ausforming on the anisotropy of low temperature bainitic transformation [J]. Mater. Charact., 2018, 145: 371
24 Zhou M X, Xu G, Wang L, et al. Comprehensive analysis of the dilatation during bainitic transformation under stress [J]. Met. Mater. Int., 2015, 21: 985
25 van Bohemen S M C, Sietsma J. Modeling of isothermal bainite formation based on the nucleation kinetics [J]. Int. J. Mater. Res., 2008, 99: 739
26 Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel [J]. Mater. Sci. Eng., 2010, A527: 3442
27 Dyson D J, Holmes B. Effect of alloying additions on the lattice parameter of austenite [J]. J. Iron Steel Inst., 1970, 208: 469
28 Cullity B D. Elements of X-ray Diffraction [M]. 2nd Ed., Reading, Massachusetts: Addison-Wesley Publishing Company, 1978: 359
29 Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite [J]. Mater. Sci. Technol., 1994, 10: 209
30 Reisner G, Werner E A, Kerschbaummayr P, et al. The modeling of retained austenite in low-alloyed TRIP steels [J]. JOM, 1997, 49(9): 62
31 De Meyer M, Vanderschueren D, De Cooman B C. The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels [J]. ISIJ Int., 1999, 39: 813
32 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
33 Zhao Y, Zhu W T, Yan S, et al. Effect of microstructure on tensile behavior and mechanical stability of retained austenite in a cold-rolled Al-containing TRIP steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1237
34 Bai D Q, Di Chiro A, Yue S. Stability of retained austenite in a Nb microalloyed Mn-Si TRIP steel [J]. Mater. Sci. Forum, 1998, 284-286: 253
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.