|
|
拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响 |
郑椿1, 刘嘉斌2( ), 江来珠1, 杨成1, 姜美雪1 |
1.福建青拓特钢技术研究有限公司 宁德 355006 2.浙江大学 材料科学与工程学院 杭州 310027 |
|
Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels |
ZHENG Chun1, LIU Jiabin2( ), JIANG Laizhu1, YANG Cheng1, JIANG Meixue1 |
1.Fujian Tsingtuo Special Steel Technology and Research Co. , Ltd. , Ningde 355006, China 2.School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
Chun ZHENG,
Jiabin LIU,
Laizhu JIANG,
Cheng YANG,
Meixue JIANG.
Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. Acta Metall Sin, 2022, 58(2): 193-205.
1 |
Lo K H , Shek C H , Lai J K L . Recent developments in stainless steels [J]. Mater. Sci. Eng., 2009, R65: 39
|
2 |
Zeng Y , Yang J H , Wang B , et al . Comparison of microstructure and properties of low-nickel austenitic stainless steels [J]. Heat. Treat. Met., 2020, 45(6): 163
|
2 |
曾 垚, 杨剑洪, 王 碧 等 . 节镍型奥氏体不锈钢的组织性能对比 [J]. 金属热处理, 2020, 45(6): 163
|
3 |
Wang Y , Peng X F , Li J , et al . Research progress on strengthening mechanism and ballistic performance of high nitrogen austenitic stainless steels [J]. Iron Steel, DOI: 10.13228/j.boyuan.issn0449-749x.20210373
|
3 |
王 宇, 彭翔飞, 李 俊 等 . 高氮奥氏体不锈钢强韧化及抗弹性能研究进展 [J]. 钢铁, DOI: 10.13228/j.boyuan.issn0449-749x.2021-0373
|
4 |
Wang X Y . Study on hot deformation behavior of nickel-reduced high nitrogen austenitic stainless steel [J]. Metall. Mater., 2019, 39(4): 41
|
4 |
王祥元 . 节镍型高氮奥氏体不锈钢热变形行为的研究 [J]. 冶金与材料, 2019, 39(4): 41
|
5 |
Lu S Y . Introduction to Stainless Steel [M]. Beijing: Chemical Industry Press, 2013: 27
|
5 |
陆世英 . 不锈钢概论 [M]. 北京: 化学工业出版社, 2013: 27
|
6 |
Singh B B , Sukumar G , Paman A , et al . A comparative study on the ballistic performance and failure mechanisms of high-nitrogen steel and RHA steel against tungsten heavy alloy penetrators [J]. J. Dyn. Behav. Mater., 2021, 7: 60
|
7 |
Weng J Y , Dong H , Li B , et al . Effect of nitrogen content on microstructure and properties of high nitrogen CrMnMo austenitic stainless steel [J]. Heat Treat. Met., 2020, 45(1): 160
|
7 |
翁建寅, 董 瀚, 李 北 等 . N含量对高氮CrMnMo奥氏体不锈钢组织和性能的影响 [J]. 金属热处理, 2020, 45(1): 160
|
8 |
Werner E . Solid solution and grain size hardening of nitrogen-alloyed austenitic steels [J]. Mater. Sci. Eng., 1988, A101: 93
|
9 |
Zhang J L , Yan B , Wang D P , et al . Fundamentals of Materials Science [M]. Beijing: Chemical Industry Press, 2006: 1
|
9 |
张钧林, 严 彪, 王德平 等 . 材料科学基础 [M]. 北京: 化学工业出版社, 2006: 1
|
10 |
Zhang R H , Yang C , Shi N , et al . Research progress in plastic deformation characteristics of high nitrogen austenitic steel [J]. Mater. Rep., 2021, 35: 11155
|
10 |
张荣华, 杨 川, 石 宁 等 . 高氮奥氏体钢的塑性加工变形特性研究进展 [J]. 材料导报, 2021, 35: 11155
|
11 |
Jiang Y , Cheng M L , Jiang H H , et al . Microstructure and properties of 08Cr19Mn6Ni3Cu2N (QN1803) high strength nitrogen alloyed low nickel austenitic stainless steel [J]. Acta. Metall. Sin., 2020, 56: 642
|
11 |
蒋 一, 程满浪, 姜海洪 等 . 高强度含N节Ni奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能 [J]. 金属学报, 2020, 56: 642
|
12 |
Li M , Liu Y J , Bao Y L , et al . Causes and countermeasures of chromatism in hard stainless steel [J]. Baosteel Technol., 2019, (4): 8
|
12 |
李 明, 刘亚军, 包玉龙 等 . 硬态不锈钢色差缺陷产生原因及对策 [J]. 宝钢技术, 2019, (4): 8
|
13 |
Dong X B , He C , Tang Z G , et al . Investigation on microstructure and mechanical properties of SUS304DQ strip steel [J]. Dev. Appl. Mater., 2020, 35(3): 6
|
13 |
董贤帮, 贺 超, 唐振光 等 . SUS304DQ精密光亮带钢显微组织及力学性能的研究 [J]. 材料开发与应用, 2020, 35(3): 6
|
14 |
Zhou W Q , Ma W W , Li Y M , et al . Effect of sensitizing treatment on the microstructure and susceptibility to intergranular corrosion of high-nitrogen austenitic stainless steel [J]. Metallogr. Microstruct. Anal., 2021, 10: 25
|
15 |
Tsai S P , Makineni S K , Gault B , et al . Precipitation formation on Σ5 and Σ7 grain boundaries in 316L stainless steel and their roles on intergranular corrosion [J]. Acta Mater., 2021, 210: 116822
|
16 |
Zhao M , Chai L J , Yuan S S , et al . Brief review on optimizing grain boundary character distribution and enhancing intergranular corrosion resistance of FCC metals [J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2018, 32(1): 135
|
16 |
赵 漫, 柴林江, 袁珊珊 等 . FCC金属晶界特征分布优化及晶间腐蚀改善 [J]. 重庆理工大学学报(自然科学), 2018, 32(1): 135
|
17 |
Kina A Y , Souza V M , Tavares S S M , et al . Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service [J]. Mater. Charact., 2008, 59: 651
|
18 |
Zhang X S , Xu Y , Zhang S H , et al . Research on the collaborative effect of plastic deformation and solution treatment in the intergranular corrosion property of austenite stainless steel [J]. Acta. Metall. Sin, 2017, 53: 335
|
18 |
张晓嵩, 徐 勇, 张士宏 等 . 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究 [J]. 金属学报, 2017, 53: 335
|
19 |
Zhang P C . Strain induced martensite behavior of 316L stainless steel subjected to warm deformation [J]. Heat Treat. Met., 2019, 44(2): 44
|
19 |
张鹏程 . 316L不锈钢在温变形条件下的应变诱导马氏体行为 [J]. 金属热处理, 2019, 44(2): 44
|
20 |
Qi M H , Ren S B , Chen J H , et al . Research progress on high nitrogen stainless steel prepared by powder metallurgy technology [J]. Powder Metall. Technol., 2017, 35: 299
|
20 |
齐美欢, 任淑彬, 陈建豪 等 . 粉末冶金制备高氮不锈钢的研究进展 [J]. 粉末冶金技术, 2017, 35: 299
|
21 |
Berns H . Manufacture and application of high nitrogen steels [J]. ISIJ Int., 1996, 36: 909
|
22 |
Cui D W , Lun G D , Wang J L , et al . Preparation of high nitrogen austenitic stainless steel by mechanical alloying and spark plasma sintering [J]. Heat Treat. Met., 2018, 43(10): 45
|
22 |
崔大伟, 伦冠德, 王金龙 等 . 机械合金化及放电等离子烧结制备高氮奥氏体不锈钢 [J]. 金属热处理, 2018, 43(10): 45
|
23 |
Wang B , Hong C S , Winther G , et al . Deformation mechanisms in meta-stable and nitrogen-stabilized austenitic stainless steel during severe surface deformation [J]. Materialia, 2020, 12: 100751
|
24 |
Allain S , Chateau J P , Bouaziz O , et al . Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
|
25 |
Ji J N . Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite [D]. Harbin: Harbin Engineering University, 2020
|
25 |
纪佳楠 . 高锰奥氏体钢中富铜纳米相析出行为及强化机制研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020
|
26 |
Dong M H . Stacking fault energies in austenitic stainless steel: A theoretical study [D]. Taiyuan: Taiyuan University of Technology, 2011
|
26 |
董明慧 . 奥氏体不锈钢层错能的理论研究 [D]. 太原: 太原理工大学, 2011
|
27 |
Dai Q X , Wang A D , Cheng X N . Stacking fault energy of cryogenic austenitic steel [J]. J. Iron Steel Res., 2002, 14(4): 34
|
27 |
戴起勋, 王安东, 程晓农 . 低温奥氏体钢的层错能 [J]. 钢铁研究学报, 2002, 14(4): 34
|
28 |
Kuniya J , Masaoka I , Sasaki R . Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water [J]. Corrosion, 1988, 44: 21
|
29 |
Chen X Y , Karasz E , Badwe N , et al . Dynamic fracture and dealloying induced stress-corrosion cracking [J]. Corros. Sci., 2021, 187: 109503
|
30 |
Pal S , Bhadauria S S , Kumar P . Studies on stress corrosion cracking of F304 stainless steel in boiling magnesium chloride solution [J]. J. Bio-. Tribo.-Corros., 2021, 7: 62
|
31 |
Cheng M L , He P , Lei L L , et al . Comparative studies on microstructure evolution and corrosion resistance of 304 and a newly developed high Mn and N austenitic stainless steel welded joints [J]. Corros. Sci., 2021, 183: 109338
|
32 |
Fu X Y . Effect of nitrogen and copper on structure and properties of low nickel austenitic stainless steels [D]. Huhhot: Inner Mongolia University of Technology, 2020
|
32 |
富晓阳 . 氮铜对低镍奥氏体不锈钢组织性能的影响 [D]. 呼和浩特: 内蒙古工业大学, 2020
|
33 |
Ouyang M H , Liu H A , Ye J X . The Discussion on the corroison of stainless steel in concentrated sulfuric acid [J]. Total Corros. Control, 2015, 29(8): 39
|
33 |
欧阳明辉, 刘焕安, 叶际宣 . 不锈钢在浓硫酸中的腐蚀探讨 [J]. 全面腐蚀控制, 2015, 29(8): 39
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|