Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1396-1415    DOI: 10.11900/0412.1961.2021.00276
  综述 本期目录 | 过刊浏览 |
多晶Ni-Mn-X相变合金的织构化与功能行为
左良(), 李宗宾(), 闫海乐, 杨波, 赵骧
东北大学 材料科学与工程学院 材料各向异性与织构(教育部)重点实验室 沈阳 110819
Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys
ZUO Liang(), LI Zongbin(), YAN Haile, YANG Bo, ZHAO Xiang
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
Liang ZUO, Zongbin LI, Haile YAN, Bo YANG, Xiang ZHAO. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. Acta Metall Sin, 2021, 57(11): 1396-1415.

全文: PDF(3892 KB)   HTML
摘要: 

具备一级马氏体相变特征的Ni-Mn-X (X = Ga、In、Sn、Sb等)系列合金具有多种显著的功能特性(如磁驱动形状记忆效应、磁热效应、弹热效应等),在新型智能驱动传感及固态制冷等领域有广阔的应用前景。本课题组近年来以多晶Ni-Mn-X合金的织构化与微观组织调控为出发点,针对多晶Ni-Mn-X系列合金的晶体结构与微观组织特征、马氏体相变晶体学以及相关功能行为等方面开展了一系列的探索;本文综述了本课题组近年来所取得的一些研究进展。

关键词 形状记忆合金马氏体相变晶体学织构磁致形状记忆效应磁热效应弹热效应    
Abstract

Ni-Mn-X (X = Ga, In, Sn, and Sb) alloys undergoing the first-order martensitic transformation have received attention owing to their various functional behaviors (e.g., magnetic shape-memory, magnetocaloric, and elastocaloric effects), which can be developed as materials for application in novel-intelligent sensing and solid-state refrigeration. Recently, along the line of texturation and microstructure control for the polycrystalline alloys, our group has conducted a series of explorations on the crystal structure and microstructural features, martensitic transformation crystallography, and related functional behavior of polycrystalline Ni-Mn-X alloys. In this paper, the recent progress of our group's study has been summarized.

Key wordsshape memory alloys    martensitic transformation    crystallographic texture    magnetic shape memory effect    magnetocaloric effect    elastocaloric effect
收稿日期: 2021-07-06     
ZTFLH:  TG139.6  
基金资助:国家自然科学基金项目(51431005);中央高校基本科研业务费项目(N2102006);辽宁省兴辽英才计划项目(XLYC1907082)
图1  磁驱动形状记忆效应机制的晶格变形示意图
图2  Ni50Mn36In14合金调制结构马氏体的高能X射线粉末衍射谱及基于超空间理论的全谱拟合谱[47]
图3  Ni50Mn36In14合金6M马氏体的超结构模型[50]
图4  多晶Ni50Mn30Ga20合金一个7M马氏体变体团内部的EBSD取向成像图[53]
Variant pairωd
(°)d1d2d3
A:C82.63-0.72881-0.00337-0.68471
179.75-0.452050.751080.48117
B:D83.00-0.72502-0.00263-0.68872
179.80-0.456350.748970.48040
A:B97.780.723590.003770.69022
179.68-0.52006-0.657490.54520
C:D96.590.71989-0.001060.69409
179.910.518200.66528-0.53747
A:D179.220.724600.004310.68915
179.51-0.68915-0.006810.72459
B:C179.590.723420.003110.69040
179.64-0.69040-0.003590.72342
表1  多晶Ni50Mn30Ga20合金7M马氏体变体间的取向差角(ω)及正交归一参考坐标系下的旋转轴(d)[53]
ElementType І (A:C / B:D)Type ІІ (A:B / C:D)Compound (A:D / B:C)
K1{1 2 10}M{1.0621 2 9.3785}M{1 0 10}M
K2{1.0621 2 9.3785}M{1 2 10}M<1 0 10>M
η1<10.5541 10 0.9446>M<10 10 1>M<10 0 1>M
η2<10 10 1>M<10.5541 10 0.9446>M<10 0 1>M
P{1 0.057 10.5699}M{1 0.057 10.5699}M{0 1 0}M
s0.22990.22990.0135
表2  Ni50Mn30Ga20合金7M马氏体的3种类型孪晶的孪生元素[53]
图5  奥氏体内包含4个7M变体的EBSD取向成像图[66]
图6  奥氏体与7M马氏体之间惯习面的TEM高分辨像(电子束沿<1 1 1>A晶带轴)[66]
Twin variantDeformation matrix
A(1.000883-0.093765-0.00419300.996474000.0037961.002006)
B(1.0008830.093765-0.00419300.99647400-0.0037961.002006)
C(1.0008830.0937650.00419300.996474000.0037961.002006)
D(1.000883-0.0937650.00419300.99647400-0.0037961.002006)
表3  表述在[1 0 1]A-[1 0 1]A-[0 1 0]A坐标系下(1 0 1)A变体团中4个7M马氏体变体的变形梯度矩阵[66]
图7  共存于同一个奥氏体晶粒内的奥氏体、7M及NM马氏体的EBSD相标定成像图及取向成像图[67]
图8  7M马氏体与NM马氏体共存的TEM明场像及相应的选区电子衍射花样[68]
图9  定向凝固Ni50Mn30Ga20合金相变过程中施加50 MPa压应力后的局部EBSD取向成像图[76]
图10  定向凝固Ni50Mn30Ga20合金的压缩应力-应变曲线及变形过程中的中子衍射图谱[77]
图11  不同压缩变形量下定向凝固Ni50Mn30Ga20合金7M马氏体的EBSD取向成像图[77]
图12  压缩载荷下变体A和D中I型、II型和复合型去孪生系统Schmid因子极射赤面投影分布图[79]
图13  多晶Ni50Mn36In14合金6M马氏体沿不同压缩方向加载前后的EBSD取向成像图[79]
图14  定向凝固Ni50Mn28.5Ga21.5合金纵截面的宏观形貌及横截面的{0 0 10}M和{0 4 0}M极图[80]
图15  机械训练后定向凝固Ni50Mn28.5Ga21.5合金样品的磁感生应变曲线[80]
图16  定向凝固Ni45.3Co5.1Mn36.1In13.5合金的M(T)曲线及1.5 T磁场下的ΔTad随温度变化[91]
图17  Ni46Co3Mn35Cu2In14合金2次测量获得的ΔSM及ΔTad随温度变化[95]
图18  定向凝固Ni55Mn18Ga27合金压应力下的超弹性应力-应变曲线及绝热温变[99]
图19  定向凝固Ni50Mn35In15合金320 K加载和卸载过程中的绝热温变及转变熵变随温度变化[105]
图20  定向凝固Ni44Mn46Sn10合金的超弹性应力-应变曲线与绝热温变曲线[106]
1 Chang L C, Read T A. Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase [J]. JOM, 1951, 3(1): 47
2 Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. J. Appl. Phys., 1963, 34: 1475
3 Otsuka K, Wayman C M, Nakai K, et al. Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys [J]. Acta Metall., 1976, 24: 207
4 Otsuka K, Sakamoto H, Shimizu K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys [J]. Acta Metall., 1979, 27: 585
5 Sato A, Chishima E, Soma K, et al. Shape memory effect in γϵ transformation in Fe-30Mn-1Si alloy single crystals [J]. Acta Metall., 1982, 30: 1177
6 Wang Y, Ren X B, Otsuka K. Shape memory effect and superelasticity in a strain glass alloy [J]. Phys. Rev. Lett., 2006, 97: 225703
7 Chen H Y, Wang Y D, Nie Z H, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals [J]. Nat. Mater., 2020, 19: 712
8 Chluba C, Ge W W, de Miranda R L, et al. Ultralow-fatigue shape memory alloy films [J]. Science, 2015, 348: 1004
9 Xia J, Noguchi Y, Xu X, et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence [J]. Science, 2020, 369: 855
10 Ogawa Y, Ando D, Sutou Y, et al. A lightweight shape-memory magnesium alloy [J]. Science, 2016, 353: 368
11 Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
12 Sutou Y, Imano Y, Koeda N, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys [J]. Appl. Phys. Lett., 2004, 85: 4358
13 Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
14 Dunand D C, Müllner P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys [J]. Adv. Mater., 2011, 23: 216
15 O'Handley R C, Murray S J, Marioni M, et al. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials (invited) [J]. J. Appl. Phys., 2000, 87: 4712
16 Pagounis E, Chulist R, Szczerba M J, et al. Over 7% magnetic field-induced strain in a Ni-Mn-Ga five-layered martensite [J]. Appl. Phys. Lett., 2014, 105: 052405
17 Pagounis E, Szczerba M J, Chulist R, et al. Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite [J]. Appl. Phys. Lett., 2015, 107: 152407
18 Sozinov A, Lanska N, Soroka A, et al. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite [J]. Appl. Phys. Lett., 2013, 102: 021902
19 Heczko O. Magnetic shape memory effect and magnetization reversal [J]. J. Magn. Magn. Mater., 2005, 290-291: 787
20 Müllner P, Chernenko V A, Kostorz G. Large cyclic magnetic-field-induced deformation in orthorhombic (14M) Ni-Mn-Ga martensite [J]. J. Appl. Phys., 2004, 95: 1531
21 Karaca H E, Karaman I, Basaran B, et al. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals [J]. Acta Mater., 2006, 54: 233
22 Krenke T, Acet M, Wassermann E F, et al. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In Alloys [J]. Phys. Rev., 2006, 73B: 174413
23 Krenke T, Acet M, Wassermann E F, et al. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys [J]. Phys. Rev., 2005, 72B: 014412
24 Monroe J A, Karaman I, Basaran B, et al. Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys [J]. Acta Mater., 2012, 60: 6883
25 Kainuma R, Imano Y, Ito W, et al. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy [J]. Appl. Phys. Lett., 2006, 88: 192513
26 Yu S Y, Ma L, Liu G D, et al. Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys [J]. Appl. Phys. Lett., 2007, 90: 242501
27 Li Z, Jing C, Zhang H L, et al. A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy [J]. J. Appl. Phys., 2009, 106: 083908
28 Salazar Mejía C, Küchler R, Nayak A K, et al. Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys [J]. Appl. Phys. Lett., 2017, 110: 071901
29 Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nat. Mater., 2005, 4: 450
30 Liu J, Gottschall T, Skokov K P, et al. Giant magnetocaloric effect driven by structural transitions [J]. Nat. Mater., 2012, 11: 620
31 Pasquale M, Sasso C P, Lewis L H, et al. Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals [J]. Phys. Rev., 2005, 72B: 094435
32 Kihara T, Xu X, Ito W, et al. Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn [J]. Phys. Rev., 2014, 90B: 214409
33 Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy [J]. Nat. Mater., 2010, 9: 478
34 Stern-Taulats E, Planes A, Lloveras P, et al. Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys [J]. Acta Mater., 2015, 96: 324
35 Yu S Y, Liu Z H, Liu G D, et al. Large magnetoresistance in single-crystalline Ni50Mn50 - xInx alloys (x = 14-16) upon martensitic transformation [J]. Appl. Phys. Lett., 2006, 89: 162503
36 Li Z B, Hu W, Chen F H, et al. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy [J]. J. Magn. Magn. Mater., 2018, 452: 249
37 Huang Y J, Hu Q D, Bruno N M, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy [J]. Scr. Mater., 2015, 105: 42
38 Zhao D W, Liu J, Chen X, et al. Giant caloric effect of low-hysteresis metamagnetic shape memory alloys with exceptional cyclic functionality [J]. Acta Mater., 2017, 133: 217
39 Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
40 Gràcia-Condal A, Gottschall T, Pfeuffer L, et al. Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field [J]. Appl. Phys. Rev., 2020, 7: 041406
41 Gottschall T, Gràcia-Condal A, Fries M, et al. A multicaloric cooling cycle that exploits thermal hysteresis [J]. Nat. Mater., 2018, 17: 929
42 Liang F X, Hao J Z, Shen F R, et al. Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15 [J]. APL Mater., 2019, 7: 051102
43 Pons J, Chernenko V A, Santamarta R, et al. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys [J]. Acta Mater., 2000, 48: 3027
44 Wang Y D, Ren Y, Huang E W, et al. Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field [J]. Appl. Phys. Lett., 2007, 90: 101917
45 Ito W, Imano Y, Kainuma R, et al. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys [J]. Metall. Mater. Trans., 2007, 38A: 759
46 Karaca H E, Karaman I, Basaran B, et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output [J]. Adv. Funct. Mater., 2009, 19: 983
47 Yan H L, Zhang Y D, Xu N, et al. Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys [J]. Acta Mater., 2015, 88: 375
48 Prince E. International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables [M]. 3rd Ed., Dordrecht: Springer, 2004: 907
49 Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: General features [J]. Z. Kristallogr. Cryst. Mater., 2014, 229: 345
50 Yan H L, Zhang C Y, Zhang Y D, et al. Crystallographic insights into Ni-Co-Mn-In metamagnetic shape memory alloy [J]. J. Appl. Cryst., 2016, 49: 1585
51 Righi L, Albertini F, Villa E, et al. Crystal structure of 7M modulated Ni-Mn-Ga martensitic phase [J]. Acta Mater., 2008, 56: 4529
52 Kaufmann S, Rößler U K, Heczko O, et al. Adaptive modulations of martensites [J]. Phys. Rev. Lett., 2010, 104: 145702.
53 Li Z B, Zhang Y D, Esling C, et al. New approach to twin interfaces of modulated martensite [J]. J. Appl. Cryst., 2010, 43: 617
54 Li Z B, Zhang Y D, Esling C, et al. Evidence for a monoclinic incommensurate superstructure in modulated martensite [J]. Acta Mater., 2012, 60: 6982
55 Li Z B, Zhang Y D, Esling C, et al. Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy [J]. Acta Mater., 2011, 59: 3390
56 Bilby B A, Crocker A G. The theory of the crystallography of deformation twinning [J]. Proc. Roy. Soc. London, 1965, 288A: 240
57 Zhang Y D, Li Z B, Esling C, et al. A general method to determine twinning elements [J]. J. Appl. Cryst., 2010, 43: 1426
58 Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
59 Cong D Y, Zhang Y D, Wang Y D, et al. Determination of microstructure and twinning relationship between martensitic variants in 53 at.%Ni-25 at.%Mn-22 at.%Ga ferromagnetic shape memory alloy [J]. J. Appl. Cryst., 2006, 39: 723
60 Yang B, Li Z B, Zhang Y D, et al. Microstructural features and orientation correlations of non-modulated martensite in Ni-Mn-Ga epitaxial thin films [J]. Acta Mater., 2013, 61: 6809
61 Lin C Q, Yan H L, Zhang Y D, et al. Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni50Mn38Sn12 alloy [J]. J. Appl. Cryst., 2016, 49: 1276
62 Zhang C Y, Yan H L, Zhang Y D, et al. Crystal structure and crystallographic characteristics of martensite in Ni50Mn38Sb12 alloys [J]. J. Appl. Cryst., 2016, 49: 513
63 Li Z B, Zhang Y D, Esling C, et al. Determination of the orientation relationship between austenite and incommensurate 7M modulated martensite in Ni-Mn-Ga alloys [J]. Acta Mater., 2011, 59: 2762
64 Li Z B, Zhang Y D, Esling C, et al. Determination of the orientation relationship between austenite and 5M modulated martensite in Ni-Mn-Ga alloys [J]. J. Appl. Cryst., 2011, 44: 1222
65 Zhang C Y, Zhang Y D, Esling C, et al. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD [J]. IUCrJ, 2017, 4: 700
66 Li Z B, Yang B, Zhang Y D, et al. Crystallographic insights into diamond-shaped 7M martensite in Ni-Mn-Ga ferromagnetic shape-memory alloys [J]. IUCrJ, 2019, 6: 909
67 Li Z B, Xu N, Zhang Y D, et al. Composition-dependent ground state of martensite in Ni-Mn-Ga alloys [J]. Acta Mater., 2013, 61: 3858
68 Li Z B, Yang B, Zhang Y D, et al. Crystallographic insights into the intermartensitic transformation in Ni-Mn-Ga alloys [J]. Acta Mater., 2014, 74: 9
69 Zhang Y D, Esling C, Zhao X, et al. Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals [J]. J. Appl. Cryst., 2007, 40: 436
70 Seguí C, Chernenko V A, Pons J, et al. Low temperature-induced intermartensitic phase transformations in Ni-Mn-Ga single crystal [J]. Acta Mater., 2005, 53: 111
71 Chernenko V A, Seguí C, Cesari E, et al. Sequence of martensitic transformations in Ni-Mn-Ga alloys [J]. Phys. Rev., 1998, 57B: 2659
72 Cong D Y, Zhang Y D, Esling C, et al. Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni-Mn-Ga ferromagnetic shape memory alloy [J]. Acta Mater., 2011, 59: 7070
73 Li Z B, Li Z Z, Yang B, et al. Crystallographic correlation between 5M and 7M martensite in an Ni-Mn-Ga alloy [J]. J. Appl. Cryst., 2016, 49: 507
74 Li Z B, Zhang Y D, Esling C, et al. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment [J]. Appl. Phys. Lett., 2014, 105: 021907
75 Li Z B, Zou N F, Yang B, et al. Effect of compressive load on the martensitic transformation from austenite to 5M martensite in a polycrystalline Ni-Mn-Ga alloy studied by in-situ neutron diffraction [J]. J. Alloys Compd., 2016, 666: 1
76 Li Z B, Li D, Chen J X, et al. Crossing twin of Ni-Mn-Ga 7M martensite induced by thermo-mechanical treatment [J]. Acta Mater., 2020, 185: 28
77 Zou N F, Li Z B, Zhang Y D, et al. Deformation of Ni-Mn-Ga 7M modulated martensite through detwinning/twinning and forward/reverse intermartensitic transformation studied by in-situ neutron diffraction and interrupted in-situ EBSD [J]. Acta Mater., 2019, 174: 319
78 Zou N F, Li Z B, Zhang Y D, et al. Plastic deformation of Ni-Mn-Ga 7M modulated martensite by twinning & detwinning and intermartensitic transformation [J]. Int. J. Plast., 2018, 100: 1
79 Yan H L, Yang B, Zhang Y D, et al. Variant organization and mechanical detwinning of modulated martensite in Ni-Mn-In metamagnetic shape-memory alloys [J]. Acta Mater., 2016, 111: 75
80 Li Z Z, Li Z B, Yang B, et al. Over 2% magnetic-field-induced strain in a polycrystalline Ni50Mn28.5Ga21.5 alloy prepared by directional solidification [J]. Mater. Sci. Eng., 2020, A780: 139170
81 Gaitzsch U, Pötschke M, Roth S, et al. A 1% magnetostrain in polycrystalline 5M Ni-Mn-Ga [J]. Acta Mater., 2009, 57: 365
82 Li Z Z, Li Z B, Yang B, et al. Large low-field magnetocaloric effect in directionally solidified Ni55Mn18 + xGa27 - x (x = 0, 1, 2) alloys [J]. J. Magn. Magn. Mater., 2018, 445: 71
83 Li Z B, Zhang Y D, Sánchez-Valdés C F, et al. Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation [J]. Appl. Phys. Lett., 2014, 104: 044101
84 Li Z B, Llamazares J L S, Sánchez-Valdés C F, et al. Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon [J]. Appl. Phys. Lett., 2012, 100: 174102
85 Li Z B, Li Z Z, Yang B, et al. Large low-field magnetocaloric effect in a directionally solidified Ni50Mn18Cu7Ga25 alloy [J]. Intermetallics, 2017, 88: 31
86 Li Z B, Jiang Y W, Li Z Z, et al. Texture inheritance from austenite to 7M martensite in Ni-Mn-Ga melt-spun ribbons [J]. Results Phys., 2016, 6: 428
87 Li Z B, Yang B, Zou N F, et al. Crystallographic characterization on polycrystalline Ni-Mn-Ga alloys with strong preferred orientation [J]. Materials, 2017, 10: 463
88 Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25 - xGa25Cux (0 ≤ x ≤ 7) melt-spun ribbons [J]. J. Phys., 2016, 49D: 025002
89 Zou N F, Li Z B, Zhang Y D, et al. Transformation process dependent magnetocaloric properties of annealed Ni50Mn18Cu7Ga25 ribbons [J]. J. Alloys Compd., 2017, 698: 731
90 Li Z B, Li Z Z, Yang B, et al. Large low-field magnetocaloric effect in a directionally solidified Ni50Mn18Cu7Ga25 alloy [J]. Intermetallics, 2017, 88: 31
91 Li Z Z, Li Z B, Yang B, et al. Giant low-field magnetocaloric effect in a textured Ni45.3Co5.1Mn36.1In13.5 alloy [J]. Scr. Mater., 2018, 151: 61
92 Li Z B, Jiang Y W, Li Z Z, et al. Phase transition and magnetocaloric properties of Mn50Ni42 - xCoxSn8 (0 ≤ x ≤ 10) melt-spun ribbons [J]. IUCrJ, 2018, 5: 54
93 Li Z B, Li Z Z, Yang J J, et al. Large room temperature adiabatic temperature variation in a Ni40Co8Mn42Sn10 polycrystalline alloy [J]. Intermetallics, 2018, 100: 57
94 Wang L M, Li Z B, Yang J J, et al. Large refrigeration capacity in a Ni48Co1Mn37In14 polycrystalline alloy with low thermal hysteresis [J]. Intermetallics, 2020, 125: 106888
95 Li Z B, Yang J J, Li D, et al. Tuning the reversible magnetocaloric effect in Ni-Mn-In-based alloys through Co and Cu Co-doping [J]. Adv. Electron. Mater., 2019, 5: 1800845
96 Li Z B, Dong S Y, Li Z Z, et al. Giant low-field magnetocaloric effect in Si alloyed Ni-Co-Mn-In alloys [J]. Scr. Mater., 2019, 159: 113
97 Yang Z, Cong D Y, Sun X M, et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys [J]. Acta Mater., 2017, 127: 33
98 Wang J M, Yu Q, Xu K Y, et al. Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition [J]. Scr. Mater., 2017, 130: 148
99 Li D, Li Z B, Yang J J, et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy [J]. Scr. Mater., 2019, 163: 116
100 Li D, Zhang X L, Zhang G Y, et al. Enhancing the elastocaloric effect in Ni-Mn-Ga alloys through the coupling of magnetic transition and two-step structural transformation [J]. Appl. Phys. Lett., 2021, 118: 213903
101 Kustov S, Corró M L, Pons J, et al. Entropy change and effect of magnetic field on martensitic transformation in a metamagnetic Ni-Co-Mn-In shape memory alloy [J]. Appl. Phys. Lett., 2009, 94: 191901
102 Recarte V, Pérez-Landazábal J I, Sánchez-Alarcos V, et al. Entropy change linked to the martensitic transformation in metamagnetic shape memory alloys [J]. Acta Mater., 2012, 60: 3168
103 Pérez-Sierra A M, Bruno N M, Pons J, et al. Atomic order and martensitic transformation entropy change in Ni-Co-Mn-In metamagnetic shape memory alloys [J]. Scr. Mater., 2016, 110: 61
104 Li Z Z, Li Z B, Li D, et al. Influence of austenite ferromagnetism on the elastocaloric effect in a Ni44.9Co4.9Mn36.9In13.3 metamagnetic shape memory alloy [J]. Appl. Phys. Lett., 2019, 115: 083903
105 Li Z Z, Li Z B, Li D, et al. Achieving a broad refrigeration temperature region through the combination of successive caloric effects in a multiferroic Ni50Mn35In15 alloy [J]. Acta Mater., 2020, 192: 52
106 Zhang G Y, Li Z B, Yang J J, et al. Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy [J]. Appl. Phys. Lett., 2020, 116: 023902
107 Zhang G Y, Li D, Liu C, et al. Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy [J]. Scr. Mater., 2021, 201: 113947
108 Li Z Z, Li Z B, Yang J J, et al. Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain [J]. Scr. Mater., 2019, 162: 486
109 Huang X M, Zhao Y, Yan H L, et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni-Mn-based alloys via copper and boron [J]. Scr. Mater., 2020, 185: 94
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[3] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[4] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[8] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[11] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[12] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[13] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[14] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.