|
|
多晶Ni-Mn-X相变合金的织构化与功能行为 |
左良( ), 李宗宾( ), 闫海乐, 杨波, 赵骧 |
东北大学 材料科学与工程学院 材料各向异性与织构(教育部)重点实验室 沈阳 110819 |
|
Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys |
ZUO Liang( ), LI Zongbin( ), YAN Haile, YANG Bo, ZHAO Xiang |
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
Liang ZUO,
Zongbin LI,
Haile YAN,
Bo YANG,
Xiang ZHAO.
Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. Acta Metall Sin, 2021, 57(11): 1396-1415.
1 |
Chang L C, Read T A. Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase [J]. JOM, 1951, 3(1): 47
|
2 |
Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. J. Appl. Phys., 1963, 34: 1475
|
3 |
Otsuka K, Wayman C M, Nakai K, et al. Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys [J]. Acta Metall., 1976, 24: 207
|
4 |
Otsuka K, Sakamoto H, Shimizu K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys [J]. Acta Metall., 1979, 27: 585
|
5 |
Sato A, Chishima E, Soma K, et al. Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals [J]. Acta Metall., 1982, 30: 1177
|
6 |
Wang Y, Ren X B, Otsuka K. Shape memory effect and superelasticity in a strain glass alloy [J]. Phys. Rev. Lett., 2006, 97: 225703
|
7 |
Chen H Y, Wang Y D, Nie Z H, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals [J]. Nat. Mater., 2020, 19: 712
|
8 |
Chluba C, Ge W W, de Miranda R L, et al. Ultralow-fatigue shape memory alloy films [J]. Science, 2015, 348: 1004
|
9 |
Xia J, Noguchi Y, Xu X, et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence [J]. Science, 2020, 369: 855
|
10 |
Ogawa Y, Ando D, Sutou Y, et al. A lightweight shape-memory magnesium alloy [J]. Science, 2016, 353: 368
|
11 |
Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
|
12 |
Sutou Y, Imano Y, Koeda N, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys [J]. Appl. Phys. Lett., 2004, 85: 4358
|
13 |
Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
|
14 |
Dunand D C, Müllner P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys [J]. Adv. Mater., 2011, 23: 216
|
15 |
O'Handley R C, Murray S J, Marioni M, et al. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials (invited) [J]. J. Appl. Phys., 2000, 87: 4712
|
16 |
Pagounis E, Chulist R, Szczerba M J, et al. Over 7% magnetic field-induced strain in a Ni-Mn-Ga five-layered martensite [J]. Appl. Phys. Lett., 2014, 105: 052405
|
17 |
Pagounis E, Szczerba M J, Chulist R, et al. Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite [J]. Appl. Phys. Lett., 2015, 107: 152407
|
18 |
Sozinov A, Lanska N, Soroka A, et al. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite [J]. Appl. Phys. Lett., 2013, 102: 021902
|
19 |
Heczko O. Magnetic shape memory effect and magnetization reversal [J]. J. Magn. Magn. Mater., 2005, 290-291: 787
|
20 |
Müllner P, Chernenko V A, Kostorz G. Large cyclic magnetic-field-induced deformation in orthorhombic (14M) Ni-Mn-Ga martensite [J]. J. Appl. Phys., 2004, 95: 1531
|
21 |
Karaca H E, Karaman I, Basaran B, et al. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals [J]. Acta Mater., 2006, 54: 233
|
22 |
Krenke T, Acet M, Wassermann E F, et al. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In Alloys [J]. Phys. Rev., 2006, 73B: 174413
|
23 |
Krenke T, Acet M, Wassermann E F, et al. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys [J]. Phys. Rev., 2005, 72B: 014412
|
24 |
Monroe J A, Karaman I, Basaran B, et al. Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys [J]. Acta Mater., 2012, 60: 6883
|
25 |
Kainuma R, Imano Y, Ito W, et al. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy [J]. Appl. Phys. Lett., 2006, 88: 192513
|
26 |
Yu S Y, Ma L, Liu G D, et al. Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys [J]. Appl. Phys. Lett., 2007, 90: 242501
|
27 |
Li Z, Jing C, Zhang H L, et al. A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy [J]. J. Appl. Phys., 2009, 106: 083908
|
28 |
Salazar Mejía C, Küchler R, Nayak A K, et al. Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys [J]. Appl. Phys. Lett., 2017, 110: 071901
|
29 |
Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nat. Mater., 2005, 4: 450
|
30 |
Liu J, Gottschall T, Skokov K P, et al. Giant magnetocaloric effect driven by structural transitions [J]. Nat. Mater., 2012, 11: 620
|
31 |
Pasquale M, Sasso C P, Lewis L H, et al. Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals [J]. Phys. Rev., 2005, 72B: 094435
|
32 |
Kihara T, Xu X, Ito W, et al. Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn [J]. Phys. Rev., 2014, 90B: 214409
|
33 |
Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy [J]. Nat. Mater., 2010, 9: 478
|
34 |
Stern-Taulats E, Planes A, Lloveras P, et al. Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys [J]. Acta Mater., 2015, 96: 324
|
35 |
Yu S Y, Liu Z H, Liu G D, et al. Large magnetoresistance in single-crystalline Ni50Mn50 - xInx alloys (x = 14-16) upon martensitic transformation [J]. Appl. Phys. Lett., 2006, 89: 162503
|
36 |
Li Z B, Hu W, Chen F H, et al. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy [J]. J. Magn. Magn. Mater., 2018, 452: 249
|
37 |
Huang Y J, Hu Q D, Bruno N M, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy [J]. Scr. Mater., 2015, 105: 42
|
38 |
Zhao D W, Liu J, Chen X, et al. Giant caloric effect of low-hysteresis metamagnetic shape memory alloys with exceptional cyclic functionality [J]. Acta Mater., 2017, 133: 217
|
39 |
Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
|
40 |
Gràcia-Condal A, Gottschall T, Pfeuffer L, et al. Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field [J]. Appl. Phys. Rev., 2020, 7: 041406
|
41 |
Gottschall T, Gràcia-Condal A, Fries M, et al. A multicaloric cooling cycle that exploits thermal hysteresis [J]. Nat. Mater., 2018, 17: 929
|
42 |
Liang F X, Hao J Z, Shen F R, et al. Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15 [J]. APL Mater., 2019, 7: 051102
|
43 |
Pons J, Chernenko V A, Santamarta R, et al. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys [J]. Acta Mater., 2000, 48: 3027
|
44 |
Wang Y D, Ren Y, Huang E W, et al. Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field [J]. Appl. Phys. Lett., 2007, 90: 101917
|
45 |
Ito W, Imano Y, Kainuma R, et al. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys [J]. Metall. Mater. Trans., 2007, 38A: 759
|
46 |
Karaca H E, Karaman I, Basaran B, et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output [J]. Adv. Funct. Mater., 2009, 19: 983
|
47 |
Yan H L, Zhang Y D, Xu N, et al. Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys [J]. Acta Mater., 2015, 88: 375
|
48 |
Prince E. International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables [M]. 3rd Ed., Dordrecht: Springer, 2004: 907
|
49 |
Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: General features [J]. Z. Kristallogr. Cryst. Mater., 2014, 229: 345
|
50 |
Yan H L, Zhang C Y, Zhang Y D, et al. Crystallographic insights into Ni-Co-Mn-In metamagnetic shape memory alloy [J]. J. Appl. Cryst., 2016, 49: 1585
|
51 |
Righi L, Albertini F, Villa E, et al. Crystal structure of 7M modulated Ni-Mn-Ga martensitic phase [J]. Acta Mater., 2008, 56: 4529
|
52 |
Kaufmann S, Rößler U K, Heczko O, et al. Adaptive modulations of martensites [J]. Phys. Rev. Lett., 2010, 104: 145702.
|
53 |
Li Z B, Zhang Y D, Esling C, et al. New approach to twin interfaces of modulated martensite [J]. J. Appl. Cryst., 2010, 43: 617
|
54 |
Li Z B, Zhang Y D, Esling C, et al. Evidence for a monoclinic incommensurate superstructure in modulated martensite [J]. Acta Mater., 2012, 60: 6982
|
55 |
Li Z B, Zhang Y D, Esling C, et al. Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy [J]. Acta Mater., 2011, 59: 3390
|
56 |
Bilby B A, Crocker A G. The theory of the crystallography of deformation twinning [J]. Proc. Roy. Soc. London, 1965, 288A: 240
|
57 |
Zhang Y D, Li Z B, Esling C, et al. A general method to determine twinning elements [J]. J. Appl. Cryst., 2010, 43: 1426
|
58 |
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
|
59 |
Cong D Y, Zhang Y D, Wang Y D, et al. Determination of microstructure and twinning relationship between martensitic variants in 53 at.%Ni-25 at.%Mn-22 at.%Ga ferromagnetic shape memory alloy [J]. J. Appl. Cryst., 2006, 39: 723
|
60 |
Yang B, Li Z B, Zhang Y D, et al. Microstructural features and orientation correlations of non-modulated martensite in Ni-Mn-Ga epitaxial thin films [J]. Acta Mater., 2013, 61: 6809
|
61 |
Lin C Q, Yan H L, Zhang Y D, et al. Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni50Mn38Sn12 alloy [J]. J. Appl. Cryst., 2016, 49: 1276
|
62 |
Zhang C Y, Yan H L, Zhang Y D, et al. Crystal structure and crystallographic characteristics of martensite in Ni50Mn38Sb12 alloys [J]. J. Appl. Cryst., 2016, 49: 513
|
63 |
Li Z B, Zhang Y D, Esling C, et al. Determination of the orientation relationship between austenite and incommensurate 7M modulated martensite in Ni-Mn-Ga alloys [J]. Acta Mater., 2011, 59: 2762
|
64 |
Li Z B, Zhang Y D, Esling C, et al. Determination of the orientation relationship between austenite and 5M modulated martensite in Ni-Mn-Ga alloys [J]. J. Appl. Cryst., 2011, 44: 1222
|
65 |
Zhang C Y, Zhang Y D, Esling C, et al. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD [J]. IUCrJ, 2017, 4: 700
|
66 |
Li Z B, Yang B, Zhang Y D, et al. Crystallographic insights into diamond-shaped 7M martensite in Ni-Mn-Ga ferromagnetic shape-memory alloys [J]. IUCrJ, 2019, 6: 909
|
67 |
Li Z B, Xu N, Zhang Y D, et al. Composition-dependent ground state of martensite in Ni-Mn-Ga alloys [J]. Acta Mater., 2013, 61: 3858
|
68 |
Li Z B, Yang B, Zhang Y D, et al. Crystallographic insights into the intermartensitic transformation in Ni-Mn-Ga alloys [J]. Acta Mater., 2014, 74: 9
|
69 |
Zhang Y D, Esling C, Zhao X, et al. Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals [J]. J. Appl. Cryst., 2007, 40: 436
|
70 |
Seguí C, Chernenko V A, Pons J, et al. Low temperature-induced intermartensitic phase transformations in Ni-Mn-Ga single crystal [J]. Acta Mater., 2005, 53: 111
|
71 |
Chernenko V A, Seguí C, Cesari E, et al. Sequence of martensitic transformations in Ni-Mn-Ga alloys [J]. Phys. Rev., 1998, 57B: 2659
|
72 |
Cong D Y, Zhang Y D, Esling C, et al. Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni-Mn-Ga ferromagnetic shape memory alloy [J]. Acta Mater., 2011, 59: 7070
|
73 |
Li Z B, Li Z Z, Yang B, et al. Crystallographic correlation between 5M and 7M martensite in an Ni-Mn-Ga alloy [J]. J. Appl. Cryst., 2016, 49: 507
|
74 |
Li Z B, Zhang Y D, Esling C, et al. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment [J]. Appl. Phys. Lett., 2014, 105: 021907
|
75 |
Li Z B, Zou N F, Yang B, et al. Effect of compressive load on the martensitic transformation from austenite to 5M martensite in a polycrystalline Ni-Mn-Ga alloy studied by in-situ neutron diffraction [J]. J. Alloys Compd., 2016, 666: 1
|
76 |
Li Z B, Li D, Chen J X, et al. Crossing twin of Ni-Mn-Ga 7M martensite induced by thermo-mechanical treatment [J]. Acta Mater., 2020, 185: 28
|
77 |
Zou N F, Li Z B, Zhang Y D, et al. Deformation of Ni-Mn-Ga 7M modulated martensite through detwinning/twinning and forward/reverse intermartensitic transformation studied by in-situ neutron diffraction and interrupted in-situ EBSD [J]. Acta Mater., 2019, 174: 319
|
78 |
Zou N F, Li Z B, Zhang Y D, et al. Plastic deformation of Ni-Mn-Ga 7M modulated martensite by twinning & detwinning and intermartensitic transformation [J]. Int. J. Plast., 2018, 100: 1
|
79 |
Yan H L, Yang B, Zhang Y D, et al. Variant organization and mechanical detwinning of modulated martensite in Ni-Mn-In metamagnetic shape-memory alloys [J]. Acta Mater., 2016, 111: 75
|
80 |
Li Z Z, Li Z B, Yang B, et al. Over 2% magnetic-field-induced strain in a polycrystalline Ni50Mn28.5Ga21.5 alloy prepared by directional solidification [J]. Mater. Sci. Eng., 2020, A780: 139170
|
81 |
Gaitzsch U, Pötschke M, Roth S, et al. A 1% magnetostrain in polycrystalline 5M Ni-Mn-Ga [J]. Acta Mater., 2009, 57: 365
|
82 |
Li Z Z, Li Z B, Yang B, et al. Large low-field magnetocaloric effect in directionally solidified Ni55Mn18 + xGa27 - x (x = 0, 1, 2) alloys [J]. J. Magn. Magn. Mater., 2018, 445: 71
|
83 |
Li Z B, Zhang Y D, Sánchez-Valdés C F, et al. Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation [J]. Appl. Phys. Lett., 2014, 104: 044101
|
84 |
Li Z B, Llamazares J L S, Sánchez-Valdés C F, et al. Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon [J]. Appl. Phys. Lett., 2012, 100: 174102
|
85 |
Li Z B, Li Z Z, Yang B, et al. Large low-field magnetocaloric effect in a directionally solidified Ni50Mn18Cu7Ga25 alloy [J]. Intermetallics, 2017, 88: 31
|
86 |
Li Z B, Jiang Y W, Li Z Z, et al. Texture inheritance from austenite to 7M martensite in Ni-Mn-Ga melt-spun ribbons [J]. Results Phys., 2016, 6: 428
|
87 |
Li Z B, Yang B, Zou N F, et al. Crystallographic characterization on polycrystalline Ni-Mn-Ga alloys with strong preferred orientation [J]. Materials, 2017, 10: 463
|
88 |
Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25 - xGa25Cux (0 ≤ x ≤ 7) melt-spun ribbons [J]. J. Phys., 2016, 49D: 025002
|
89 |
Zou N F, Li Z B, Zhang Y D, et al. Transformation process dependent magnetocaloric properties of annealed Ni50Mn18Cu7Ga25 ribbons [J]. J. Alloys Compd., 2017, 698: 731
|
90 |
Li Z B, Li Z Z, Yang B, et al. Large low-field magnetocaloric effect in a directionally solidified Ni50Mn18Cu7Ga25 alloy [J]. Intermetallics, 2017, 88: 31
|
91 |
Li Z Z, Li Z B, Yang B, et al. Giant low-field magnetocaloric effect in a textured Ni45.3Co5.1Mn36.1In13.5 alloy [J]. Scr. Mater., 2018, 151: 61
|
92 |
Li Z B, Jiang Y W, Li Z Z, et al. Phase transition and magnetocaloric properties of Mn50Ni42 - xCoxSn8 (0 ≤ x ≤ 10) melt-spun ribbons [J]. IUCrJ, 2018, 5: 54
|
93 |
Li Z B, Li Z Z, Yang J J, et al. Large room temperature adiabatic temperature variation in a Ni40Co8Mn42Sn10 polycrystalline alloy [J]. Intermetallics, 2018, 100: 57
|
94 |
Wang L M, Li Z B, Yang J J, et al. Large refrigeration capacity in a Ni48Co1Mn37In14 polycrystalline alloy with low thermal hysteresis [J]. Intermetallics, 2020, 125: 106888
|
95 |
Li Z B, Yang J J, Li D, et al. Tuning the reversible magnetocaloric effect in Ni-Mn-In-based alloys through Co and Cu Co-doping [J]. Adv. Electron. Mater., 2019, 5: 1800845
|
96 |
Li Z B, Dong S Y, Li Z Z, et al. Giant low-field magnetocaloric effect in Si alloyed Ni-Co-Mn-In alloys [J]. Scr. Mater., 2019, 159: 113
|
97 |
Yang Z, Cong D Y, Sun X M, et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys [J]. Acta Mater., 2017, 127: 33
|
98 |
Wang J M, Yu Q, Xu K Y, et al. Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition [J]. Scr. Mater., 2017, 130: 148
|
99 |
Li D, Li Z B, Yang J J, et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy [J]. Scr. Mater., 2019, 163: 116
|
100 |
Li D, Zhang X L, Zhang G Y, et al. Enhancing the elastocaloric effect in Ni-Mn-Ga alloys through the coupling of magnetic transition and two-step structural transformation [J]. Appl. Phys. Lett., 2021, 118: 213903
|
101 |
Kustov S, Corró M L, Pons J, et al. Entropy change and effect of magnetic field on martensitic transformation in a metamagnetic Ni-Co-Mn-In shape memory alloy [J]. Appl. Phys. Lett., 2009, 94: 191901
|
102 |
Recarte V, Pérez-Landazábal J I, Sánchez-Alarcos V, et al. Entropy change linked to the martensitic transformation in metamagnetic shape memory alloys [J]. Acta Mater., 2012, 60: 3168
|
103 |
Pérez-Sierra A M, Bruno N M, Pons J, et al. Atomic order and martensitic transformation entropy change in Ni-Co-Mn-In metamagnetic shape memory alloys [J]. Scr. Mater., 2016, 110: 61
|
104 |
Li Z Z, Li Z B, Li D, et al. Influence of austenite ferromagnetism on the elastocaloric effect in a Ni44.9Co4.9Mn36.9In13.3 metamagnetic shape memory alloy [J]. Appl. Phys. Lett., 2019, 115: 083903
|
105 |
Li Z Z, Li Z B, Li D, et al. Achieving a broad refrigeration temperature region through the combination of successive caloric effects in a multiferroic Ni50Mn35In15 alloy [J]. Acta Mater., 2020, 192: 52
|
106 |
Zhang G Y, Li Z B, Yang J J, et al. Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy [J]. Appl. Phys. Lett., 2020, 116: 023902
|
107 |
Zhang G Y, Li D, Liu C, et al. Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy [J]. Scr. Mater., 2021, 201: 113947
|
108 |
Li Z Z, Li Z B, Yang J J, et al. Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain [J]. Scr. Mater., 2019, 162: 486
|
109 |
Huang X M, Zhao Y, Yan H L, et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni-Mn-based alloys via copper and boron [J]. Scr. Mater., 2020, 185: 94
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|