Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 1007-1014    DOI: 10.11900/0412.1961.2019.00402
  本期目录 | 过刊浏览 |
预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响
韩宝帅1, 魏立军1,2, 徐严谨1(), 马晓光1, 刘雅菲1, 侯红亮1
1.中国航空制造技术研究院 北京 100024
2.北京航空航天大学材料科学与工程学院 北京 100083
Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment
HAN Baoshuai1, WEI Lijun1,2, XU Yanjin1(), MA Xiaoguang1, LIU Yafei1, HOU Hongliang1
1. AVIC Manufacturing Technology Institute, Beijing 100024, China
2. School of Materials Science and Engineering, Beihang University, Beijing 100083, China
全文: PDF(2794 KB)   HTML
摘要: 

利用TEM、XRD、SEM、DSC以及室温拉伸等方法,研究了预变形对超高强Al-Zn-Mg-Cu合金组织与性能的影响。通过对比未经预变形和预变形量为3%及4%的Al-Zn-Mg-Cu合金时效态微观组织与拉伸力学性能,发现:预变形可以提高铝合金时效析出速率和密度,变形量为3%时可促进析出相在晶内弥散分布,但增加到4%会导致析出相粗化;经预变形处理后晶间析出相尺寸减小,晶界无析出带宽度降低;抗拉强度和屈服强度提高,伸长率略微提高,经3%预变形以及80 ℃、12 h和120 ℃、8 h时效后的抗拉强度可达到(813±4) MPa,伸长率为10.10%±0.77%。分析认为,预变形产生的位错为析出相形核提供了异质形核的质点,改善了其在晶内与晶间的分布状态。

关键词 超高强铝合金预变形析出相晶间无析出带力学性能    
Abstract

Ultra-high strength Al-Zn-Mg-Cu alloy is a promising lightweight structural material, and there is still room to improve its mechanical property. As a typical precipitation strengthening material, controlling the size and distribution of precipitate is an effective way to enhance the mechanical properties of the ultra-high strength Al-Zn-Mg-Cu alloy. The influence of pre-deformation on the microstructures and properties of the ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment was studied by TEM, XRD, SEM, DSC and tensile tests. The microstructures and the tensile mechanical properties of Al-Zn-Mg-Cu alloy without pre-deformation and with 3% and 4% pre-deformation were compared. It is found that the pre-deformation can promote the ageing precipitation rate and enhance the precipitate density in the Al-Zn-Mg-Cu alloy, and the pre-deformation ratio of 3% can promote the dispersion of the precipitate phase in the grain interiors, but the pre-deformation ratio of 4% may result in coarsening of precipitate. The size of precipitate along the grain boundaries and the width of precipitation free zones decreased in the pre-deformation treated ultra-high strength Al-Zn-Mg-Cu alloys. The tensile strength and yield strength of the pre-deformation treated ultra-high strength Al-Zn-Mg-Cu alloys increased, and the elongation also increased slightly, in which the tensile strength and elongation of 3% pre-deformation alloy combined with 80 ℃ for 12 h and 120 ℃ for 8 h ageing were (813±4) MPa and 10.10%±0.77%, respectively. The results show that the dislocations produced by pre-deformation may provide more heterogeneous nucleation sites for the precipitate formation, and improve the precipitate's distribution.

Key wordsultra-high strength Al alloy    pre-deformation    precipitate    precipitation free zone    mechanical property
收稿日期: 2019-11-25     
ZTFLH:  TG379  
基金资助:国防基础科研项目(JCKY2017205B032);国家自然科学基金项目(51971206)
通讯作者: 徐严谨     E-mail: xuyj020@avic.com
Corresponding author: XU Yanjin     E-mail: xuyj020@avic.com
作者简介: 韩宝帅,男,1985年生,工程师,博士

引用本文:

韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
Baoshuai HAN, Lijun WEI, Yanjin XU, Xiaoguang MA, Yafei LIU, Hongliang HOU. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment. Acta Metall Sin, 2020, 56(7): 1007-1014.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00402      或      https://www.ams.org.cn/CN/Y2020/V56/I7/1007

Sample No.Heat treatment processAbbreviation
1No deformation alloy+80 ℃, 12 h+120 ℃, 8 h12+8
23% deformation alloy+80 ℃, 12 h+120 ℃, 8 h3%+12+8
34% deformation alloy+80 ℃, 12 h+120 ℃, 8 h4%+12+8
4No deformation alloy+80 ℃, 12 h+120 ℃, 10 h12+10
表1  时效工艺参数
图1  不同变形量下固溶态Al-Zn-Mg-Cu合金的XRD谱
图2  不同时效条件下超高强Al-Zn-Mg-Cu合金的微观组织
图3  不同时效状态下超高强Al-Zn-Mg-Cu合金晶间析出相形貌
Ageing process parameterUltimate strength / MPaYield strength / MPaElongation / %
12+8796±5772±79.77±0.51
3%+12+8813±4786±410.10±0.77
4%+12+8807±3781±510.63±0.74
12+10803±2770±89.57±0.66
表2  不同时效状态下超高强Al-Zn-Mg-Cu合金的力学性能
图4  不同热处理状态下超高强Al-Zn-Mg-Cu合金的断口形貌
图5  不同时效状态下超高强Al-Zn-Mg-Cu合金的DSC曲线
[1] Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
[1] (张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257)
doi: 10.11900/0412.1961.2014.00406
[2] Yang S J, Xing Q Y, Yu H J, et al. Al-Zn-Mg-Cu alloys with strength of 800MPa [J]. J. Mater. Eng., 2018, 46(4): 82
[2] (杨守杰, 邢清源, 于海军等. 800MPa级Al-Zn-Mg-Cu系合金 [J]. 材料工程, 2018, 46(4): 82)
[3] Zhang X M, Zhang T J, Tian F, et al. Effects of multi-direction forging on improving properties of 7075 aluminum alloy [J]. Rare Met. Mater. Eng., 2003, 32: 372
[3] (张小明, 张廷杰, 田 锋等. 多向锻造对改善7075铝合金性能的作用 [J]. 稀有金属材料与工程, 2003, 32: 372)
[4] Chen K H, Liu H W, Liu Y Z. Effect of promotively-solutionizing heat treatment on the mechanical properties and fracture behavior of Al-Zn-Mg-Cu alloys [J]. Acta Metall. Sin., 2001, 37: 29
[4] (陈康华, 刘红卫, 刘允中. 强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响 [J]. 金属学报, 2001, 37: 29)
[5] Hou L G, Liu M L, Wang X D, et al. Cryogenic processing high-strength 7050 aluminum alloy and controlling of the microstructures and mechanical properties [J]. Acta Metall. Sin., 2017, 53: 1075
[5] (侯陇刚, 刘明荔, 王新东等. 高强7050铝合金超低温大变形加工与组织、性能调控 [J]. 金属学报, 2017, 53: 1075)
[6] Han X L, Xiong B Q, Zhang Y A, et al. Effect of solution treatment on microstructures and mechanical properties of 7150 aluminum alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1095
[6] (韩小磊, 熊柏青, 张永安等. 固溶处理对7150铝合金组织和力学性能的影响 [J]. 中国有色金属学报, 2010, 20: 1095)
[7] Zuo J R, Hou L G, Shi J T, et al. Precipitates and the evolution of grain structures during double-step rolling of high-strength aluminum alloy and related properties [J]. Acta Metall. Sin., 2016, 52: 1105
[7] (左锦荣, 侯陇刚, 史金涛等. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响 [J]. 金属学报, 2016, 52: 1105)
[8] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
[9] Jia Y D, Cao F Y, Ning Z L, et al. Influence of second phases on mechanical properties of spray-deposited Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2012, 40: 536
[10] Zhao W J, Cao F Y, Gu X L, et al. Isothermal deformation of spray formed Al-Zn-Mg-Cu alloy [J]. Mech. Mater., 2013, 56: 95
[11] Wang F, Xiong B Q, Zhang Y A, et al. Microstructure and mechanical properties of spray-deposited Al-Zn-Mg-Cu alloy processed through hot rolling and heat treatment [J]. Mater. Sci. Eng., 2009, A518: 144
[12] Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
[13] Sharma M M. Microstructural and mechanical characterization of various modified 7XXX series spray formed alloys [J]. Mater. Charact., 2008, 59: 91
[14] Werenskiold J C, Deschamps A, Bréchet Y. Characterization and modeling of precipitation kinetics in an Al-Zn-Mg alloy [J]. Mater. Sci. Eng., 2000, A293: 267
[15] Huang Y J, Chen Z G, Zheng Z Q. A conventional thermo-mechanical process of Al-Cu-Mg alloy for increasing ductility while maintaining high strength [J]. Scr. Mater., 2011, 64: 382
[16] Han N M, Zhang X M, Liu S D, et al. Effect of prestretching on fracture toughness of 7050 aluminum alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 2088
[16] (韩念梅, 张新明, 刘胜胆等. 预拉伸对7050铝合金断裂韧性的影响 [J]. 中国有色金属学报, 2010, 20: 2088)
[17] Liu S D, Li Q, Ye L Y, et al. Effects of pre-stretching on mechanical properties and localized corrosion of 7085 aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2018, 49: 2152
[17] (刘胜胆, 李 群, 叶凌英等. 预拉伸对7085铝合金力学及局部腐蚀性能的影响 [J]. 中南大学学报(自然科学版), 2018, 49: 2152)
[18] Wang D, Ma Z Y. Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy [J]. J. Alloys Compd., 2009, 469: 445
[19] Zhao J J, Xu X J, Chen Y, et al. Microstructures and properties of ultra-high-strength Al-Zn-Mg-Cu-Zr-Sr alloy with pre-deformation [J]. Chin. J. Rare Met., 2016, 40: 1193
[19] (赵建吉, 许晓静, 陈 洋等. 预变形对超高强铝合金Al-Zn-Mg-Cu-Zr-Sr组织与性能的影响 [J]. 稀有金属, 2016, 40: 1193)
[20] Youssef K M, Scattergood R O, Murty K L, et al. Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility [J]. Scr. Mater., 2006, 54: 251
[21] Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J]. Acta Mater., 2004, 52: 4589
[22] Li X W, Cai Q Z, Zhao B Y, et al. Precipitation behaviors and properties of solution-aging Al-Zn-Mg-Cu alloy refined with TiN nanoparticles [J]. J. Alloys Compd., 2018, 746: 462
[23] Dumont M, Lefebvre W, Doisneau-Cottignies B, et al. Characterisation of the composition and volume fraction of η′ and η precipitates in an Al-Zn-Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy [J]. Acta Mater., 2005, 53: 2881
[24] Chen J Z, Zhen L, Yang S J, et al. Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy [J]. Mater. Sci. Eng., 2009, A500: 34
[25] Li H C, Cao F Y, Guo S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys [J]. J. Alloys Compd., 2017, 719: 89
[26] Wang F, Xiong B Q, Zhang Y A, et al. Effect of two-step aging treatment on microstructure and mechanical properties of spray-deposited Al-10.8Zn-2.8Mg-1.9Cu alloy [J]. Chin. J. Nonferrous Met., 2007, 17: 1058
[26] (王 峰, 熊柏青, 张永安等. 双级时效处理对喷射沉积Al-Zn-Mg-Cu合金微观组织和力学性能的影响 [J]. 中国有色金属学报, 2007, 17: 1058)
[27] Li H C, Cao F Y, Guo S, et al. Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition [J]. J. Alloys Compd., 2017, 691: 482
[28] Wang D, Ni D R, Ma Z Y. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy [J]. Mater. Sci. Eng., 2008, A494: 360
[29] Deschamps A, De Geuser F, Horita Z, et al. Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy [J]. Acta Mater., 2014, 66: 105
[30] Wang S S, Jiang J T, Fan G H, et al. Accelerated precipitation and growth of phases in an Al-Zn-Mg-Cu alloy processed by surface abrasion [J]. Acta Mater., 2017, 131: 233
[31] Lee Y S, Koh D H, Kim H W, et al. Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment [J]. Scr. Mater., 2018, 147: 45
[32] Chen J Z, Lv L X, Zhen L, et al. Quantitative characterization on the precipitation of AA 7055 aluminum alloy by SAXS [J]. Acta Metall. Sin., 2017, 53: 897
[32] (陈军洲, 吕良星, 甄 良等. AA7055铝合金时效析出过程的小角度X射线散射定量表征 [J]. 金属学报, 2017, 53: 897)
[33] Feng D, Zhang X M, Chen H M, et al. Effect of non-isothermal retrogression and re-ageing on microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate [J]. Acta Metall. Sin., 2018, 54: 100
doi: 10.11900/0412.1961.2017.00203
[33] (冯 迪, 张新明, 陈洪美等. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响 [J]. 金属学报, 2018, 54: 100)
doi: 10.11900/0412.1961.2017.00203
[34] Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 [J]. Mater. Sci. Eng., 2011, A528: 3714
[35] Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys—I. The model [J]. Acta Metall. Mater., 1990, 38: 1789
[36] Park J K, Ardell A J. Microchemical analysis of precipitate free zones in 7075-A1 in the T6, T7 and RRA tempers [J]. Acta Metall. Mater., 1991, 39: 591
doi: 10.1016/0956-7151(91)90127-M
[1] 张茂龙, 鲁艳红, 陈胜虎, 戎利建, 陆皓. 不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响[J]. 金属学报, 2020, 56(8): 1057-1066.
[2] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[3] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[4] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[11] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[14] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.