|
|
高强韧QPT工艺的先进钢组织调控和强韧化研究进展 |
李伟( ), 贾兴祺, 金学军 |
上海交通大学 材料科学与工程学院 相变与结构研究所 上海 200240 |
|
Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness |
LI Wei( ), JIA Xingqi, JIN Xuejun |
Institute of Phase Transformation and Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
Wei LI,
Xingqi JIA,
Xuejun JIN.
Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. Acta Metall Sin, 2022, 58(4): 444-456.
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
|
2 |
Ma M T, Yi H L, Lu H Z, et al. On the lightweighting of automobile [J]. Eng. Sci., 2009, 11(9): 20
|
2 |
马鸣图, 易红亮, 路洪洲 等. 论汽车轻量化 [J]. 中国工程科学, 2009, 11(9): 20
|
3 |
Speer J G, Streicher A M, Matlock D K, et al. Austenite Formation and Decomposition [M]. Warrendale, PA: TMS, 2003: 505
|
4 |
Speer J G, De Moor E, Findley K O, et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel [J]. Metall. Mater. Trans., 2011, 42A: 3591
|
5 |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
|
6 |
Sakuma Y, Matsumura O, Takechi H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions [J]. Metall. Trans., 1991, 22A: 489
|
7 |
Kim S J, Lee C G, Choi I, et al. Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.5 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets [J]. Metall. Mater. Trans., 2001, 32A: 505
|
8 |
Matsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel [J]. Trans. Iron Steel Inst. Jpn, 1987, 27: 570
|
9 |
Matsumura O, Sakuma Y, Takechi H. Trip and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel [J]. Scr. Metall., 1987, 21: 1301
|
10 |
Matlock D K, Speer J G. Design considerations for the next generation of advanced high strength sheet steels [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels (ICASS) [C]. Seoul, South Korea: Korean Institute of Metals and Materials, 2006: 774
|
11 |
Liu L, He B B, Cheng G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite [J]. Scr. Mater., 2018, 150: 1
|
12 |
Allain S Y P, Gaudez S, Geandier G, et al. Internal stresses and carbon enrichment in austenite of quenching and partitioning steels from high energy X-ray diffraction experiments [J]. Mater. Sci. Eng., 2018, A710: 245
|
13 |
Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
|
14 |
Toji Y, Miyamoto G, Raabe D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation [J]. Acta Mater., 2015, 86: 137
|
15 |
Hsu T Y, Xu Z Y. Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum, 2007, 561-565: 2283
|
16 |
Hsu T Y. Quenching-partitioning-tempering process for ultra-high strength steel [J]. Int. Heat Treat. Surf. Eng., 2008, 2: 64
|
17 |
Hsu T Y, Jin X J. Ultra-high strength steel treated by using quenching-partitioning-tempering process [A]. Advanced Steels [M]. Berlin, Heidelberg: Springer, 2011: 67
|
18 |
Hsu T Y, Jin X J, Rong Y H. Strengthening and toughening mechanisms of quenching-partitioning-tempering (Q-P-T) steels [J]. J. Alloys Compd., 2013, 577: S568
|
19 |
Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
|
20 |
Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
|
21 |
De Cooman B C. High Mn TWIP steel and medium Mn steel [A]. Automotive Steels [M]. Design: Woodhead Publishing, 2017: 317
|
22 |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
|
23 |
Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing [J]. Scr. Mater., 2018, 154: 30
|
24 |
Aydin H, Jung I H, Essadiqi E, et al. Twinning and tripping in 10% Mn steels [J]. Mater. Sci. Eng., 2014, A591: 90
|
25 |
Lee S, Woo W, De Cooman B C. Analysis of the plasticity-enhancing mechanisms in 12 pctMn austeno-ferritic steel by in situ neutron diffraction [J]. Metall. Mater. Trans., 2014, 45A: 5823
|
26 |
Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 Wt Pct medium Mn steel [J]. Metall. Mater. Trans., 2015, 46A: 2356
|
27 |
Sohn S S, Choi K, Kwak J H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms [J]. Acta Mater., 2014, 78: 181
|
28 |
Matas S, Hehemann R F. Retained austenite and the tempering of martensite [J]. Nature, 1960, 187: 685
|
29 |
Wang S B, Kistanov A A, King G, et al. In-situ quantification and density functional theory elucidation of phase transformation in carbon steel during quenching and partitioning [J]. Acta Mater., 2021, 221: 117361
|
30 |
Morsdorf L, Emelina E, Gault B, et al. Carbon redistribution in quenched and tempered lath martensite [J]. Acta Mater., 2021, 205: 116521
|
31 |
Dai Z B, Ding R, Yang Z G, et al. Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during Quenching and Partitioning of the Fe-C-Mn-Si steels: Modeling and experiments [J]. Acta Mater., 2018, 144: 666
|
32 |
Zhang J Z, Dai Z B, Zeng L Y, et al. Revealing carbide precipitation effects and their mechanisms during quenching-partitioning-tempering of a high carbon steel: Experiments and modeling [J]. Acta Mater., 2021, 217: 117176
|
33 |
Kickinger C, Suppan C, Hebesberger T, et al. Microstructure and mechanical properties of partially ferritic Q&P steels [J]. Mater. Sci. Eng., 2021, A815: 141296
|
34 |
Lu H H, Guo H K, Zhang W G, et al. Improving the mechanical properties of the ASIS 430 stainless steels by using Q&P and Q&T processes [J]. Mater. Lett., 2019, 240: 275
|
35 |
Zheng H, Hu F, Zhou W, et al. Influence of intercritical heating on the microstructure and mechanical properties of al‐rich quenching-partitioning-tempering steel [J]. Steel Res. Int., 2019, 90: 1900198
|
36 |
Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel [J]. Metall. Mater. Trans., 2001, 32A: 1527
|
37 |
Li Z C, Ding H, Misra R D K, et al. Microstructural evolution and deformation behavior in the Fe-(6, 8.5)Mn-3Al-0.2C TRIP steels [J]. Mater. Sci. Eng., 2016, A672: 161
|
38 |
Huang H, Matsumura O, Furukawa T. Retained austenite in low carbon, manganese steel after intercritical heat treatment [J]. Mater. Sci. Technol., 1994, 10: 621
|
39 |
Maheswari N, Amirthalingam M, Schwedt A, et al. Temperature dependent partitioning mechanisms and its associated microstructural evolution in a CMnSiAl quenching and partitioning (Q&P) steel [J]. Mater. Today Commun., 2021, 29: 102918
|
40 |
Ghosh G, Olson G B. Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
|
41 |
Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
|
42 |
Tsuji N, Maki T. Enhanced structural refinement by combining phase transformation and plastic deformation in steels [J]. Scr. Mater., 2009, 60: 1044
|
43 |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
|
44 |
Min J Y, Hector Jr L G, Zhang L, et al. Elevated-temperature mechanical stability and transformation behavior of retained austenite in a quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A673: 423
|
45 |
Tirumalasetty G K, van Huis M A, Kwakernaak C, et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel [J]. Acta Mater., 2012, 60: 1311
|
46 |
Zhang S, Findley K O. Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels [J]. Acta Mater., 2013, 61: 1895
|
47 |
Ebner S, Schnitzer R, Maawad E, et al. Influence of partitioning parameters on the mechanical stability of austenite in a Q&P steel: A comparative in-situ study [J]. Materialia, 2021, 15: 101033
|
48 |
Curtze S, Kuokkala V T, Hokka M, et al. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates [J]. Mater. Sci. Eng., 2009, A507: 124
|
49 |
Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate [J]. Acta Mater., 2010, 58: 5129
|
50 |
van der Wegen G J L, Bronsveld P M, de Hosson J T M. A comparison between different theories predicting the stacking fault energy from extended nodes [J]. Scr. Metall., 1980, 14: 285
|
51 |
Allain S, Chateau J P, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J]. Mater. Sci. Eng., 2004, A387-389: 143
|
52 |
da Silva A K, Inden G, Kumar A, et al. Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography [J]. Acta Mater., 2018, 147: 165
|
53 |
Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations [J]. Science, 2015, 349: 1080
|
54 |
Li Y, Li W, Min N, et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels [J]. Acta Mater., 2017, 139: 96
|
55 |
Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126
|
56 |
Dmitrieva O, Ponge D, Inden G, et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation [J]. Acta Mater., 2011, 59: 364
|
57 |
Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel [J]. Acta Mater., 2015, 86: 182
|
58 |
Chen H, Gamsjäger E, Schider S, et al. In situ observation of austenite-ferrite interface migration in a lean Mn steel during cyclic partial phase transformations [J]. Acta Mater., 2013, 61: 2414
|
59 |
Jin H, Elfimov I, Militzer M. Study of the interaction of solutes with Σ5 (013) tilt grain boundaries in iron using density-functional theory [J]. J. Appl. Phys., 2014, 115: 093506
|
60 |
Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transformation-induced plasticity—twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance [J]. Acta Mater., 2015, 85: 216
|
61 |
Han J, da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel [J]. Acta Mater., 2017, 122: 199
|
62 |
Raabe D, Sandlöbes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite [J]. Acta Mater., 2013, 61: 6132
|
63 |
Li Y, Li W, Min N, et al. Mechanical response of a medium manganese steel with encapsulated austenite [J]. Scr. Mater., 2020, 178: 211
|
64 |
Hu B, Luo H W. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel [J]. Acta Mater., 2019, 176: 250
|
65 |
Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
|
66 |
Santofimia M J, Speer J G, Clarke A J, et al. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing [J]. Acta Mater., 2009, 57: 4548
|
67 |
Dai Z B, Ding R, Yang Z G, et al. Thermo-kinetic design of retained austenite in advanced high strength steels [J]. Acta Mater., 2018, 152: 288
|
68 |
Jin X J, Gong Y, Han X H, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
|
68 |
金学军, 龚 煜, 韩先洪 等. 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56: 411
|
69 |
Shi Z M, Liu K, Wang M Q, et al. Effect of non-isothermal deformation of austenite on phase transformation and microstructure of 22SiMn2TiB steel [J]. Mater. Sci. Eng., 2012, A535: 290
|
70 |
Winter S, Werner M, Haase R, et al. Processing Q&P steels by hot-metal gas forming: Influence of local cooling rates on the properties and microstructure of a 3rd generation AHSS [J]. J. Mater. Process. Technol., 2021, 293: 117070
|
71 |
Xu Y S, Gong Y, Du H, et al. A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel [J]. Int. J. Lightweight Mater. Manuf., 2020, 3: 26
|
72 |
Pineau A G, Pelloux R M. Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels [J]. Metall. Mater. Trans., 1974, 5B: 1103
|
73 |
Ritchie R O, Suresh S. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology [J]. Metall. Trans., 1982, 13A: 937
|
74 |
Stringfellow R G. Mechanics of strain-induced transformation toughening in metastable austenitic steels [D]. Cambridge: Massachusetts Institute of Technology, 1990: 516
|
75 |
Leal R H. Transformation toughening of metastable austenitic steels [D]. Cambridge: Massachusetts Institute of Technology, 1984
|
76 |
Wu R M. Study on the relationship between toughness and microstructural evolution of quenching & partitioning (Q&P) treated high-strength sheet steel [D]. Shanghai: Shanghai Jiao Tong University, 2015
|
76 |
吴日铭. Q&P处理高强薄板钢韧性与组织演变相关性的研究 [D]. 上海: 上海交通大学, 2015
|
77 |
Gao G H, Gao B, Gui X L, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06-0.42 wt%C) [J]. Mater. Sci. Eng., 2019, A753: 1
|
78 |
Hockauf K, Wagner M F X, Mašek B, et al. Mechanisms of fatigue crack propagation in a Q&P-processed steel [J]. Mater. Sci. Eng., 2019, A754: 18
|
79 |
Calcagnotto M, Ponge D, Raabe D. Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 7832
|
80 |
Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
|
81 |
Cao W Q, Zhang M D, Huang C X, et al. Ultrahigh Charpy impact toughness (~ 450 J) achieved in high strength ferrite/martensite laminated steels [J]. Sci. Rep., 2017, 7: 41459
|
82 |
Cepeda-Jiménez C M, García-Infanta J M, Pozuelo M, et al. Impact toughness improvement of high-strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding [J]. Scr. Mater., 2009, 61: 407
|
83 |
Pozuelo M, Carreño F, Ruano O A. Delamination effect on the impact toughness of an ultrahigh carbon-mild steel laminate composite [J]. Compos. Sci. Technol., 2006, 66: 2671
|
84 |
Kimura Y, Inoue T, Yin F X, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel [J]. Science, 2008, 320: 1057
|
85 |
Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
|
86 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
|
87 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
|
88 |
Xia P, Vercruysse F, Celada-Casero C, et al. Effect of alloying and microstructure on formability of advanced high-strength steels processed via quenching and partitioning [J]. Mater. Sci. Eng., 2022, A831: 142217
|
89 |
Zhang J Z, Cui Y G, Zuo X W, et al. Dislocations across interphase enable plain steel with high strength-ductility [J]. Sci. Bull., 2021, 66: 1058
|
90 |
Baker L J, Daniel S R, Parker J D. Metallurgy and processing of ultralow carbon bake hardening steels [J]. Mater. Sci. Technol., 2002, 18: 355
|
91 |
Zhao J Z, De A K, De Cooman B C. Formation of the Cottrell atmosphere during strain aging of bake-hardenable steels [J]. Metall. Mater. Trans., 2001, 32A: 417
|
92 |
De Cooman B C. Structure-properties relationship in TRIP steels containing carbide-free bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 285
|
93 |
Zhu X, Li W, Hsu T Y, et al. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment [J]. Scr. Mater., 2015, 97: 21
|
94 |
Szost B A, Vegter R H, Rivera-Díaz-del-Castillo P E J. Hydrogen-trapping mechanisms in nanostructured steels [J]. Metall. Mater. Trans., 2013, 44A: 4542
|
95 |
Zhang S Q, Huang Y H, Sun B T, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels [J]. Mater. Sci. Eng., 2015, A626: 136
|
96 |
Nagao A, Hayashi K, Oi K, et al. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates [J]. ISIJ Int., 2012, 52: 213
|
97 |
Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24
|
98 |
Zhu X, Li W, Zhao H S, et al. Unveiling the origin of work hardening behavior in an ultrafine-grained manganese transformation-induced plasticity steel by hydrogen investigation [J]. Metall. Mater. Trans., 2016, 47A: 4362
|
99 |
Lu H Z, Zhao Y, Feng Y, et al. Progress and prospect for development and application of microalloying press-hardening steel [J]. Mater. Mech. Eng., 2020, 44(12): 1
|
99 |
路洪洲, 赵 岩, 冯 毅 等. 微合金化热成形钢开发应用进展及展望 [J]. 机械工程材料, 2020, 44(12): 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|