Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 444-456    DOI: 10.11900/0412.1961.2021.00524
  综述 本期目录 | 过刊浏览 |
高强韧QPT工艺的先进钢组织调控和强韧化研究进展
李伟(), 贾兴祺, 金学军
上海交通大学 材料科学与工程学院 相变与结构研究所 上海 200240
Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness
LI Wei(), JIA Xingqi, JIN Xuejun
Institute of Phase Transformation and Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
Wei LI, Xingqi JIA, Xuejun JIN. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. Acta Metall Sin, 2022, 58(4): 444-456.

全文: PDF(1781 KB)   HTML
摘要: 

先进高强钢经历了从第一代至第三代的高速发展,为汽车工业中轻量化及安全性的持续提升提供了重要保障。作为第三代先进高强钢的代表钢种之一,淬火-配分(QP)钢和淬火-配分-回火(QPT)钢近10年来发展迅速。本文从以下几个方面对QP钢及QPT钢的制备工艺和强韧化机理进行了综述:(1) 从QP到QPT的工艺设计发展历程及其原理;(2) 配分过程中的C配分和组织演变规律;(3) 亚稳奥氏体的稳定性及其对相变诱发塑性(TRIP)效应的影响;(4) 纳米析出强化的QPT钢的组织和热处理工艺设计;(5) 热成形QPT钢一体化工艺;(6) QP钢、QPT钢的强韧化机制和使用服役性能。并对今后QP钢和QPT钢的制造与使用前景作出展望。

关键词 先进钢QPT配分马氏体相变强韧性    
Abstract

Advanced high-strength steels have undergone rapid development from the first to third generation, which has considerably contributed to the continuous improvement of lightweight materials and safety in the automotive industry. The third generation representative steels, including quenching-partitioning (QP) and quenching-partitioning-tempering (QPT) steels have rapidly developed in the past 10 years. This article summarizes the preparation process as well as the strengthening and toughening mechanisms of QP and QPT steels from the following perspectives: (1) process design development and principles from QP to QPT, (2) carbon distribution and microstructure evolution during the partitioning process, (3) stability of metastable austenite and its influence on transformation-induced plasticity, (4) microstructure and heat-treatment process design of nanoprecipitation-strengthened QPT steel, (5) the integrated process of hot-forming QPT steel, and (6) the strengthening and toughening mechanisms and the service performance of QP and QPT steels. Finally, future prospects for manufacturing and using QP and QPT steels are discussed.

Key wordsadvanced steel    QPT    partition    martensitic transformation    strength and toughness
收稿日期: 2021-12-01     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52071209);国家自然科学基金项目(51831002);国家重点研发计划项目(2017YFB0703003)
作者简介: 李 伟,男,1981年生,副教授,博士
图1  淬火-配分(QP)热处理工艺和相应目标组织示意图
图2  中锰钢QP工艺和对应的目标组织示意图
图3  不同前驱组织QPT热处理后两相界面处的Mn分布的透射电镜(TEM)像和能谱(EDS)分析[54]
图4  回火-双配分(TDP)处理得到了具有Mn浓度梯度的核壳结构奥氏体TDP以及双配分(DP)工艺下双相组织的TEM像和EDS分析,以及TDP工艺下奥氏体/铁素体界面及析出相处的三维原子探针表征[63]
图5  非等温配分工艺应用于热成形高强钢的原理示意图
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
2 Ma M T, Yi H L, Lu H Z, et al. On the lightweighting of automobile [J]. Eng. Sci., 2009, 11(9): 20
2 马鸣图, 易红亮, 路洪洲 等. 论汽车轻量化 [J]. 中国工程科学, 2009, 11(9): 20
3 Speer J G, Streicher A M, Matlock D K, et al. Austenite Formation and Decomposition [M]. Warrendale, PA: TMS, 2003: 505
4 Speer J G, De Moor E, Findley K O, et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel [J]. Metall. Mater. Trans., 2011, 42A: 3591
5 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
6 Sakuma Y, Matsumura O, Takechi H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions [J]. Metall. Trans., 1991, 22A: 489
7 Kim S J, Lee C G, Choi I, et al. Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.5 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets [J]. Metall. Mater. Trans., 2001, 32A: 505
8 Matsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel [J]. Trans. Iron Steel Inst. Jpn, 1987, 27: 570
9 Matsumura O, Sakuma Y, Takechi H. Trip and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel [J]. Scr. Metall., 1987, 21: 1301
10 Matlock D K, Speer J G. Design considerations for the next generation of advanced high strength sheet steels [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels (ICASS) [C]. Seoul, South Korea: Korean Institute of Metals and Materials, 2006: 774
11 Liu L, He B B, Cheng G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite [J]. Scr. Mater., 2018, 150: 1
12 Allain S Y P, Gaudez S, Geandier G, et al. Internal stresses and carbon enrichment in austenite of quenching and partitioning steels from high energy X-ray diffraction experiments [J]. Mater. Sci. Eng., 2018, A710: 245
13 Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
14 Toji Y, Miyamoto G, Raabe D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation [J]. Acta Mater., 2015, 86: 137
15 Hsu T Y, Xu Z Y. Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum, 2007, 561-565: 2283
16 Hsu T Y. Quenching-partitioning-tempering process for ultra-high strength steel [J]. Int. Heat Treat. Surf. Eng., 2008, 2: 64
17 Hsu T Y, Jin X J. Ultra-high strength steel treated by using quenching-partitioning-tempering process [A]. Advanced Steels [M]. Berlin, Heidelberg: Springer, 2011: 67
18 Hsu T Y, Jin X J, Rong Y H. Strengthening and toughening mechanisms of quenching-partitioning-tempering (Q-P-T) steels [J]. J. Alloys Compd., 2013, 577: S568
19 Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
20 Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
21 De Cooman B C. High Mn TWIP steel and medium Mn steel [A]. Automotive Steels [M]. Design: Woodhead Publishing, 2017: 317
22 Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
23 Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing [J]. Scr. Mater., 2018, 154: 30
24 Aydin H, Jung I H, Essadiqi E, et al. Twinning and tripping in 10% Mn steels [J]. Mater. Sci. Eng., 2014, A591: 90
25 Lee S, Woo W, De Cooman B C. Analysis of the plasticity-enhancing mechanisms in 12 pctMn austeno-ferritic steel by in situ neutron diffraction [J]. Metall. Mater. Trans., 2014, 45A: 5823
26 Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 Wt Pct medium Mn steel [J]. Metall. Mater. Trans., 2015, 46A: 2356
27 Sohn S S, Choi K, Kwak J H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms [J]. Acta Mater., 2014, 78: 181
28 Matas S, Hehemann R F. Retained austenite and the tempering of martensite [J]. Nature, 1960, 187: 685
29 Wang S B, Kistanov A A, King G, et al. In-situ quantification and density functional theory elucidation of phase transformation in carbon steel during quenching and partitioning [J]. Acta Mater., 2021, 221: 117361
30 Morsdorf L, Emelina E, Gault B, et al. Carbon redistribution in quenched and tempered lath martensite [J]. Acta Mater., 2021, 205: 116521
31 Dai Z B, Ding R, Yang Z G, et al. Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during Quenching and Partitioning of the Fe-C-Mn-Si steels: Modeling and experiments [J]. Acta Mater., 2018, 144: 666
32 Zhang J Z, Dai Z B, Zeng L Y, et al. Revealing carbide precipitation effects and their mechanisms during quenching-partitioning-tempering of a high carbon steel: Experiments and modeling [J]. Acta Mater., 2021, 217: 117176
33 Kickinger C, Suppan C, Hebesberger T, et al. Microstructure and mechanical properties of partially ferritic Q&P steels [J]. Mater. Sci. Eng., 2021, A815: 141296
34 Lu H H, Guo H K, Zhang W G, et al. Improving the mechanical properties of the ASIS 430 stainless steels by using Q&P and Q&T processes [J]. Mater. Lett., 2019, 240: 275
35 Zheng H, Hu F, Zhou W, et al. Influence of intercritical heating on the microstructure and mechanical properties of al‐rich quenching-partitioning-tempering steel [J]. Steel Res. Int., 2019, 90: 1900198
36 Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel [J]. Metall. Mater. Trans., 2001, 32A: 1527
37 Li Z C, Ding H, Misra R D K, et al. Microstructural evolution and deformation behavior in the Fe-(6, 8.5)Mn-3Al-0.2C TRIP steels [J]. Mater. Sci. Eng., 2016, A672: 161
38 Huang H, Matsumura O, Furukawa T. Retained austenite in low carbon, manganese steel after intercritical heat treatment [J]. Mater. Sci. Technol., 1994, 10: 621
39 Maheswari N, Amirthalingam M, Schwedt A, et al. Temperature dependent partitioning mechanisms and its associated microstructural evolution in a CMnSiAl quenching and partitioning (Q&P) steel [J]. Mater. Today Commun., 2021, 29: 102918
40 Ghosh G, Olson G B. Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
41 Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
42 Tsuji N, Maki T. Enhanced structural refinement by combining phase transformation and plastic deformation in steels [J]. Scr. Mater., 2009, 60: 1044
43 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
44 Min J Y, Hector Jr L G, Zhang L, et al. Elevated-temperature mechanical stability and transformation behavior of retained austenite in a quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A673: 423
45 Tirumalasetty G K, van Huis M A, Kwakernaak C, et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel [J]. Acta Mater., 2012, 60: 1311
46 Zhang S, Findley K O. Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels [J]. Acta Mater., 2013, 61: 1895
47 Ebner S, Schnitzer R, Maawad E, et al. Influence of partitioning parameters on the mechanical stability of austenite in a Q&P steel: A comparative in-situ study [J]. Materialia, 2021, 15: 101033
48 Curtze S, Kuokkala V T, Hokka M, et al. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates [J]. Mater. Sci. Eng., 2009, A507: 124
49 Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate [J]. Acta Mater., 2010, 58: 5129
50 van der Wegen G J L, Bronsveld P M, de Hosson J T M. A comparison between different theories predicting the stacking fault energy from extended nodes [J]. Scr. Metall., 1980, 14: 285
51 Allain S, Chateau J P, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J]. Mater. Sci. Eng., 2004, A387-389: 143
52 da Silva A K, Inden G, Kumar A, et al. Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography [J]. Acta Mater., 2018, 147: 165
53 Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations [J]. Science, 2015, 349: 1080
54 Li Y, Li W, Min N, et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels [J]. Acta Mater., 2017, 139: 96
55 Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126
56 Dmitrieva O, Ponge D, Inden G, et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation [J]. Acta Mater., 2011, 59: 364
57 Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel [J]. Acta Mater., 2015, 86: 182
58 Chen H, Gamsjäger E, Schider S, et al. In situ observation of austenite-ferrite interface migration in a lean Mn steel during cyclic partial phase transformations [J]. Acta Mater., 2013, 61: 2414
59 Jin H, Elfimov I, Militzer M. Study of the interaction of solutes with Σ5 (013) tilt grain boundaries in iron using density-functional theory [J]. J. Appl. Phys., 2014, 115: 093506
60 Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transformation-induced plasticity—twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance [J]. Acta Mater., 2015, 85: 216
61 Han J, da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel [J]. Acta Mater., 2017, 122: 199
62 Raabe D, Sandlöbes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite [J]. Acta Mater., 2013, 61: 6132
63 Li Y, Li W, Min N, et al. Mechanical response of a medium manganese steel with encapsulated austenite [J]. Scr. Mater., 2020, 178: 211
64 Hu B, Luo H W. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel [J]. Acta Mater., 2019, 176: 250
65 Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
66 Santofimia M J, Speer J G, Clarke A J, et al. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing [J]. Acta Mater., 2009, 57: 4548
67 Dai Z B, Ding R, Yang Z G, et al. Thermo-kinetic design of retained austenite in advanced high strength steels [J]. Acta Mater., 2018, 152: 288
68 Jin X J, Gong Y, Han X H, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
68 金学军, 龚 煜, 韩先洪 等. 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56: 411
69 Shi Z M, Liu K, Wang M Q, et al. Effect of non-isothermal deformation of austenite on phase transformation and microstructure of 22SiMn2TiB steel [J]. Mater. Sci. Eng., 2012, A535: 290
70 Winter S, Werner M, Haase R, et al. Processing Q&P steels by hot-metal gas forming: Influence of local cooling rates on the properties and microstructure of a 3rd generation AHSS [J]. J. Mater. Process. Technol., 2021, 293: 117070
71 Xu Y S, Gong Y, Du H, et al. A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel [J]. Int. J. Lightweight Mater. Manuf., 2020, 3: 26
72 Pineau A G, Pelloux R M. Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels [J]. Metall. Mater. Trans., 1974, 5B: 1103
73 Ritchie R O, Suresh S. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology [J]. Metall. Trans., 1982, 13A: 937
74 Stringfellow R G. Mechanics of strain-induced transformation toughening in metastable austenitic steels [D]. Cambridge: Massachusetts Institute of Technology, 1990: 516
75 Leal R H. Transformation toughening of metastable austenitic steels [D]. Cambridge: Massachusetts Institute of Technology, 1984
76 Wu R M. Study on the relationship between toughness and microstructural evolution of quenching & partitioning (Q&P) treated high-strength sheet steel [D]. Shanghai: Shanghai Jiao Tong University, 2015
76 吴日铭. Q&P处理高强薄板钢韧性与组织演变相关性的研究 [D]. 上海: 上海交通大学, 2015
77 Gao G H, Gao B, Gui X L, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06-0.42 wt%C) [J]. Mater. Sci. Eng., 2019, A753: 1
78 Hockauf K, Wagner M F X, Mašek B, et al. Mechanisms of fatigue crack propagation in a Q&P-processed steel [J]. Mater. Sci. Eng., 2019, A754: 18
79 Calcagnotto M, Ponge D, Raabe D. Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 7832
80 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
81 Cao W Q, Zhang M D, Huang C X, et al. Ultrahigh Charpy impact toughness (~ 450 J) achieved in high strength ferrite/martensite laminated steels [J]. Sci. Rep., 2017, 7: 41459
82 Cepeda-Jiménez C M, García-Infanta J M, Pozuelo M, et al. Impact toughness improvement of high-strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding [J]. Scr. Mater., 2009, 61: 407
83 Pozuelo M, Carreño F, Ruano O A. Delamination effect on the impact toughness of an ultrahigh carbon-mild steel laminate composite [J]. Compos. Sci. Technol., 2006, 66: 2671
84 Kimura Y, Inoue T, Yin F X, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel [J]. Science, 2008, 320: 1057
85 Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
86 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
87 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
88 Xia P, Vercruysse F, Celada-Casero C, et al. Effect of alloying and microstructure on formability of advanced high-strength steels processed via quenching and partitioning [J]. Mater. Sci. Eng., 2022, A831: 142217
89 Zhang J Z, Cui Y G, Zuo X W, et al. Dislocations across interphase enable plain steel with high strength-ductility [J]. Sci. Bull., 2021, 66: 1058
90 Baker L J, Daniel S R, Parker J D. Metallurgy and processing of ultralow carbon bake hardening steels [J]. Mater. Sci. Technol., 2002, 18: 355
91 Zhao J Z, De A K, De Cooman B C. Formation of the Cottrell atmosphere during strain aging of bake-hardenable steels [J]. Metall. Mater. Trans., 2001, 32A: 417
92 De Cooman B C. Structure-properties relationship in TRIP steels containing carbide-free bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 285
93 Zhu X, Li W, Hsu T Y, et al. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment [J]. Scr. Mater., 2015, 97: 21
94 Szost B A, Vegter R H, Rivera-Díaz-del-Castillo P E J. Hydrogen-trapping mechanisms in nanostructured steels [J]. Metall. Mater. Trans., 2013, 44A: 4542
95 Zhang S Q, Huang Y H, Sun B T, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels [J]. Mater. Sci. Eng., 2015, A626: 136
96 Nagao A, Hayashi K, Oi K, et al. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates [J]. ISIJ Int., 2012, 52: 213
97 Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24
98 Zhu X, Li W, Zhao H S, et al. Unveiling the origin of work hardening behavior in an ultrafine-grained manganese transformation-induced plasticity steel by hydrogen investigation [J]. Metall. Mater. Trans., 2016, 47A: 4362
99 Lu H Z, Zhao Y, Feng Y, et al. Progress and prospect for development and application of microalloying press-hardening steel [J]. Mater. Mech. Eng., 2020, 44(12): 1
99 路洪洲, 赵 岩, 冯 毅 等. 微合金化热成形钢开发应用进展及展望 [J]. 机械工程材料, 2020, 44(12): 1
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[5] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[6] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[7] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[8] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[9] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[10] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[11] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[12] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[13] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[14] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.