Please wait a minute...
金属学报  2022, Vol. 58 Issue (6): 771-780    DOI: 10.11900/0412.1961.2020.00509
  研究论文 本期目录 | 过刊浏览 |
预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响
任平1, 陈兴品1(), 王存宇2, 俞峰2, 曹文全2
1.重庆大学 材料科学与工程学院 重庆 400044
2.钢铁研究总院 特殊钢研究所 北京 100081
Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel
REN Ping1, CHEN Xingpin1(), WANG Cunyu2, YU Feng2, CAO Wenquan2
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
Ping REN, Xingpin CHEN, Cunyu WANG, Feng YU, Wenquan CAO. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. Acta Metall Sin, 2022, 58(6): 771-780.

全文: PDF(4295 KB)   HTML
摘要: 

采用EBSD、TEM和万能试验机等研究了冷轧预变形和双级时效对Fe-30Mn-11Al-1.2C (质量分数,%)奥氏体低密度钢微观组织演变和力学性能的影响。结果表明,双级时效可以显著地提高材料的屈服强度,从固溶时的580 MPa到1120 MPa,但同时使得均匀延伸率急剧降低至几乎为0;而经过轧制预变形+双级时效处理后的样品,材料的屈服强度进一步提高,达到1220 MPa,同时材料的均匀延伸率大幅提高至18.2%,钢的综合力学性能得到明显提升。微观组织分析表明,双级时效后材料屈服强度的提升归因于κ′碳化物的有序化强化;预变形可以在奥氏体基体中引入有效的异质形核点,诱导晶内析出;该析出相(析出强化)结合预变形引入位错(形变强化)进一步提高材料的屈服强度,同时提高了材料的应变硬化能力,这是材料高塑性的根本原因。该工艺为奥氏体低密度钢的性能改善提供了新思路。

关键词 Fe-Mn-Al-C钢低密度钢轧制预变形加工硬化双级时效    
Abstract

Lightweight Fe-Mn-Al-C steels are promising candidates for automobile structural materials and have gained increased scientific and commercial interest owing to their outstanding mechanical properties and low density. To date, several studies have been conducted to illustrate the mechanism of phase transformation, strengthening, and strain hardening under solution and aging state. Moreover, prestrain before aging as a low-cost and simple method to tailor precipitates and control properties has been widely reported; however, it has been barely investigated in the Fe-Mn-Al-C alloy system. Therefore, in this study, the effects of pre-cold rolling and two-step aging on the microstructure and mechanical properties of Fe-30Mn-11Al-1.2C (mass fraction, %) austenitic low-density steel are investigated using EBSD, TEM, and universal testing machine. Results showed that the yield strength (YS) significantly increased via the two-step aging from 580 MPa (at solution state) to 1120 MPa, but the uniform elongation (UE) sharply decreased to approximately 0. However, after the pre-cold rolling and two-step aging, the YS of the material further improved to 1220 MPa, and the UE significantly increased to 18.2%, which implies an improvement in the comprehensive mechanical properties of the material. According to the microstructure analysis, the increase in YS after the two-step aging was caused by the ordering strengthening effect of κ' carbide. Further, the pre-cold rolling could introduce heterogeneous nucleation sites, inducing intragranular precipitation. The combination of the precipitation strengthening of the precipitates and deformation strengthening induced via the pre-cold rolling further increased the YS of the material. Moreover, these intragranular precipitates could improve the work hardening capability, which is the root cause of the high plasticity of materials. This process provides a novel idea for improving the performance of austenitic low-density steels.

Key wordsFe-Mn-Al-C steel    low-density steel    pre-cold rolling    work hardening    two-step aging
收稿日期: 2020-12-18     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51871062);国家自然科学基金项目(52171105);中央高校基本科研业务费项目(2020CDJDPT001)
作者简介: 任 平,男,1993年生,博士生
图1  形变热处理流程图
图2  不同形变热处理状态Fe-30Mn-11Al-1.2C钢的室温拉伸测试结果
图3  固溶态Fe-30Mn-11Al-1.2C样品的EBSD反极图、EBSD相图、κ′碳化物的TEM暗场像和选区电子衍射(SAED)花样
图4  一级时效(A1)态及二级时效(A1 + A2)态Fe-30Mn-11Al-1.2C钢中κ′碳化物的TEM暗场像和SAED花样
图5  冷轧预变形(CR)态Fe-30Mn-11Al-1.2C钢的TEM明场像
图6  CR + A1态Fe-30Mn-11Al-1.2C钢的TEM明场像、κ′碳化物TEM暗场像及κ′碳化物SAED花样
图7  CR + A1 + A2态Fe-30Mn-11Al-1.2C钢样品的TEM分析
图8  Fe-30Mn-11Al-1.2C钢形变热处理过程中微观组织演变的示意图
图9  κ′碳化物(110)晶面原子排布和反相畴界示意图
1 Suh D W, Kim N J. Low-density steels [J]. Scr. Mater., 2013, 68: 337
doi: 10.1016/j.scriptamat.2012.11.037
2 Rana R. Low-density steels [J]. JOM, 2014, 66: 1730
doi: 10.1007/s11837-014-1137-2
3 Howell R A, Van Aken D C. A literature review of age hardening Fe-Mn-Al-C alloys [J]. Iron Steel Technol., 2009, 6: 193
4 Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties [J]. Sci. Technol. Adv. Mater., 2013, 14: 014205
5 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
6 Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. J. Mater. Sci., 2018, 53: 14003
doi: 10.1007/s10853-018-2551-6
7 Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
8 Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels [J]. JOM, 2014, 66: 1845
doi: 10.1007/s11837-014-1032-x
9 Springer H, Raabe D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels [J]. Acta Mater., 2012, 60: 4950
doi: 10.1016/j.actamat.2012.05.017
10 Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
doi: 10.1016/j.actamat.2017.08.049
11 Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791
doi: 10.1016/j.actamat.2012.07.018
12 Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
doi: 10.1016/j.actamat.2016.06.037
13 Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
doi: 10.1016/j.scriptamat.2010.07.036
14 Lee K, Park S J, Kang J Y, et al. Investigation of the aging behavior and orientation relationships in Fe-31.4Mn-11.4Al-0.89C low-density steel [J]. J. Alloys Compd., 2017, 723: 146
doi: 10.1016/j.jallcom.2017.06.250
15 Lin C L, Chao C G, Bor H Y, et al. Relationship between microstructures and tensile properties of an Fe-30Mn-8.5Al-2.0C alloy [J]. Mater. Trans., 2010, 51: 1084
doi: 10.2320/matertrans.M2010013
16 Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight triplex steels [J]. Steel Res. Int., 2006, 77: 627
doi: 10.1002/srin.200606440
17 Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
18 Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel [J]. Metall. Mater. Trans., 2009, 40A: 1520
19 Chbihi A, Vincent S, Ribis J, et al. Influence of plastic deformation on the precipitation sequence in an AA6061 alloy [J]. J. Mater. Sci., 2017, 52: 6063
doi: 10.1007/s10853-017-0845-8
20 Gazizov M, Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. Mater. Sci. Eng., 2015, A625: 119
21 Ouyang Y, Gan X P, Li Z, et al. Microstructure evolution of a Cu-15Ni-8Sn-0.8Nb alloy during prior deformation and aging treatment [J]. Mater. Sci. Eng., 2017, A704: 128
22 Gao N, Huttunen-Saarivirta E, Tiainen T, et al. Influence of prior deformation on the age hardening of a phosphorus-containing Cu-0.61wt.%Cr alloy [J]. Mater. Sci. Eng., 2003, A342: 270
23 Min X H, Emura S, Zhang L, et al. Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle Ω phase [J]. Mater. Sci. Eng., 2015, A646: 279
24 Song Z Y, Sun Q Y, Xiao L, et al. The influence of prior cold deformation on precipitation of alpha phase and variation of hardness in Ti-10Mo-8V-1Fe-3.5Al during aging treatment [J]. J. Mater. Res., 2009, 24: 452
doi: 10.1557/JMR.2009.0051
25 Song B, She J, Guo N, et al. Regulating precipitates by simple cold deformations to strengthen Mg alloys: A review [J]. Materials, 2019, 12: 2507
doi: 10.3390/ma12162507
26 Xing J, Hou L F, Du H Y, et al. Effects of pre-deformation on the kinetics of β-Mn phase precipitation and mechanical properties in Fe-30Mn-9Al-1C lightweight steel [J]. Metall. Mater. Trans., 2019, 50A: 2629
27 Han K H. The microstructures and mechanical properties of an austenitic Nb-bearing Fe-Mn-Al-C alloy processed by controlled rolling [J]. Mater. Sci. Eng., 2000, A279: 1
28 Ren P, Chen X P, Mei L, et al. Intragranular brittle precipitates improve strain hardening capability of Fe-30Mn-11Al-1.2C low-density steel [J]. Mater. Sci. Eng., 2020, A775: 138984
29 Sato K, Tagawa K, Inoue Y. Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys [J]. Metall. Trans., 1990, 21A: 5
30 Kim C W, Kwon S I, Lee B H, et al. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel [J]. Mater. Sci. Eng., 2016, A673: 108
31 Jin J E, Lee Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel [J]. Acta Mater., 2012, 60: 1680
doi: 10.1016/j.actamat.2011.12.004
32 Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J]. Scr. Mater., 2013, 68: 343
doi: 10.1016/j.scriptamat.2012.08.038
33 Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition [J]. Mater. Sci. Eng., 2010, A527: 3651
34 Abedi H R, Hanzaki A Z, Haghdadi N, et al. Substructure induced twinning in low density steel [J]. Scr. Mater., 2017, 128: 69
doi: 10.1016/j.scriptamat.2016.10.001
35 Song H, Sohn S S, Kwak J H, et al. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels [J]. Metall. Mater. Trans., 2016, 47A: 2674
36 Han D, He J X, Guan X J, et al. Impact of short-range clustering on the multistage work-hardening behavior in Cu-Ni alloys [J]. Metals, 2019, 9: 151
doi: 10.3390/met9020151
37 Han D, Wang Z Y, Yan Y, et al. A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering [J]. Scr. Mater., 2017, 133: 59
doi: 10.1016/j.scriptamat.2017.02.010
38 Zhang Y J, Han D, Li X W. A unique two-stage strength-ductility match in low solid-solution hardening Ni-Cr alloys: Decisive role of short range ordering [J]. Scr. Mater., 2020, 178: 269
doi: 10.1016/j.scriptamat.2019.11.049
39 Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
40 Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles [J]. Scr. Mater., 2005, 52: 1075
doi: 10.1016/j.scriptamat.2005.02.016
41 Ebeling R, Ashby M F. Dispersion hardening of copper single crystals [J]. Philos. Mag., 1966, 13A: 805
42 Lee K, Park S J, Moon J, et al. β-Mn formation and aging effect on the fracture behavior of high-Mn low-density steels [J]. Scr. Mater., 2016, 124: 193
doi: 10.1016/j.scriptamat.2016.04.040
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[3] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[4] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[5] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[6] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[7] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[8] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[9] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[10] 马广财, 付华萌, 王峥, 徐庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[11] 邓德安, KIYOSHIMA Shoichi. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响*[J]. 金属学报, 2014, 50(5): 626-632.
[12] 莫永达, 姜雁斌, 刘新华, 谢建新. 柱状晶组织HAl77-2铝黄铜的力学性能与加工硬化行为[J]. 金属学报, 2014, 50(11): 1367-1376.
[13] 李海, 毛庆忠, 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响[J]. 金属学报, 2014, 50(11): 1357-1366.
[14] 赵征志, 佟婷婷, 赵爱民, 何青, 董瑞, 赵复庆. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162.
[15] 张海燕,张士宏,程明. δ相对GH4169合金高温拉伸变形行为的影响[J]. 金属学报, 2013, 29(4): 483-488.