|
|
预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 |
任平1, 陈兴品1( ), 王存宇2, 俞峰2, 曹文全2 |
1.重庆大学 材料科学与工程学院 重庆 400044 2.钢铁研究总院 特殊钢研究所 北京 100081 |
|
Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel |
REN Ping1, CHEN Xingpin1( ), WANG Cunyu2, YU Feng2, CAO Wenquan2 |
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2.Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China |
引用本文:
任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
Ping REN,
Xingpin CHEN,
Cunyu WANG,
Feng YU,
Wenquan CAO.
Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. Acta Metall Sin, 2022, 58(6): 771-780.
1 |
Suh D W, Kim N J. Low-density steels [J]. Scr. Mater., 2013, 68: 337
doi: 10.1016/j.scriptamat.2012.11.037
|
2 |
Rana R. Low-density steels [J]. JOM, 2014, 66: 1730
doi: 10.1007/s11837-014-1137-2
|
3 |
Howell R A, Van Aken D C. A literature review of age hardening Fe-Mn-Al-C alloys [J]. Iron Steel Technol., 2009, 6: 193
|
4 |
Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties [J]. Sci. Technol. Adv. Mater., 2013, 14: 014205
|
5 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
|
6 |
Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. J. Mater. Sci., 2018, 53: 14003
doi: 10.1007/s10853-018-2551-6
|
7 |
Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
|
8 |
Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels [J]. JOM, 2014, 66: 1845
doi: 10.1007/s11837-014-1032-x
|
9 |
Springer H, Raabe D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels [J]. Acta Mater., 2012, 60: 4950
doi: 10.1016/j.actamat.2012.05.017
|
10 |
Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
doi: 10.1016/j.actamat.2017.08.049
|
11 |
Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791
doi: 10.1016/j.actamat.2012.07.018
|
12 |
Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
doi: 10.1016/j.actamat.2016.06.037
|
13 |
Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
doi: 10.1016/j.scriptamat.2010.07.036
|
14 |
Lee K, Park S J, Kang J Y, et al. Investigation of the aging behavior and orientation relationships in Fe-31.4Mn-11.4Al-0.89C low-density steel [J]. J. Alloys Compd., 2017, 723: 146
doi: 10.1016/j.jallcom.2017.06.250
|
15 |
Lin C L, Chao C G, Bor H Y, et al. Relationship between microstructures and tensile properties of an Fe-30Mn-8.5Al-2.0C alloy [J]. Mater. Trans., 2010, 51: 1084
doi: 10.2320/matertrans.M2010013
|
16 |
Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight triplex steels [J]. Steel Res. Int., 2006, 77: 627
doi: 10.1002/srin.200606440
|
17 |
Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
|
18 |
Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel [J]. Metall. Mater. Trans., 2009, 40A: 1520
|
19 |
Chbihi A, Vincent S, Ribis J, et al. Influence of plastic deformation on the precipitation sequence in an AA6061 alloy [J]. J. Mater. Sci., 2017, 52: 6063
doi: 10.1007/s10853-017-0845-8
|
20 |
Gazizov M, Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. Mater. Sci. Eng., 2015, A625: 119
|
21 |
Ouyang Y, Gan X P, Li Z, et al. Microstructure evolution of a Cu-15Ni-8Sn-0.8Nb alloy during prior deformation and aging treatment [J]. Mater. Sci. Eng., 2017, A704: 128
|
22 |
Gao N, Huttunen-Saarivirta E, Tiainen T, et al. Influence of prior deformation on the age hardening of a phosphorus-containing Cu-0.61wt.%Cr alloy [J]. Mater. Sci. Eng., 2003, A342: 270
|
23 |
Min X H, Emura S, Zhang L, et al. Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle Ω phase [J]. Mater. Sci. Eng., 2015, A646: 279
|
24 |
Song Z Y, Sun Q Y, Xiao L, et al. The influence of prior cold deformation on precipitation of alpha phase and variation of hardness in Ti-10Mo-8V-1Fe-3.5Al during aging treatment [J]. J. Mater. Res., 2009, 24: 452
doi: 10.1557/JMR.2009.0051
|
25 |
Song B, She J, Guo N, et al. Regulating precipitates by simple cold deformations to strengthen Mg alloys: A review [J]. Materials, 2019, 12: 2507
doi: 10.3390/ma12162507
|
26 |
Xing J, Hou L F, Du H Y, et al. Effects of pre-deformation on the kinetics of β-Mn phase precipitation and mechanical properties in Fe-30Mn-9Al-1C lightweight steel [J]. Metall. Mater. Trans., 2019, 50A: 2629
|
27 |
Han K H. The microstructures and mechanical properties of an austenitic Nb-bearing Fe-Mn-Al-C alloy processed by controlled rolling [J]. Mater. Sci. Eng., 2000, A279: 1
|
28 |
Ren P, Chen X P, Mei L, et al. Intragranular brittle precipitates improve strain hardening capability of Fe-30Mn-11Al-1.2C low-density steel [J]. Mater. Sci. Eng., 2020, A775: 138984
|
29 |
Sato K, Tagawa K, Inoue Y. Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys [J]. Metall. Trans., 1990, 21A: 5
|
30 |
Kim C W, Kwon S I, Lee B H, et al. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel [J]. Mater. Sci. Eng., 2016, A673: 108
|
31 |
Jin J E, Lee Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel [J]. Acta Mater., 2012, 60: 1680
doi: 10.1016/j.actamat.2011.12.004
|
32 |
Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J]. Scr. Mater., 2013, 68: 343
doi: 10.1016/j.scriptamat.2012.08.038
|
33 |
Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition [J]. Mater. Sci. Eng., 2010, A527: 3651
|
34 |
Abedi H R, Hanzaki A Z, Haghdadi N, et al. Substructure induced twinning in low density steel [J]. Scr. Mater., 2017, 128: 69
doi: 10.1016/j.scriptamat.2016.10.001
|
35 |
Song H, Sohn S S, Kwak J H, et al. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels [J]. Metall. Mater. Trans., 2016, 47A: 2674
|
36 |
Han D, He J X, Guan X J, et al. Impact of short-range clustering on the multistage work-hardening behavior in Cu-Ni alloys [J]. Metals, 2019, 9: 151
doi: 10.3390/met9020151
|
37 |
Han D, Wang Z Y, Yan Y, et al. A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering [J]. Scr. Mater., 2017, 133: 59
doi: 10.1016/j.scriptamat.2017.02.010
|
38 |
Zhang Y J, Han D, Li X W. A unique two-stage strength-ductility match in low solid-solution hardening Ni-Cr alloys: Decisive role of short range ordering [J]. Scr. Mater., 2020, 178: 269
doi: 10.1016/j.scriptamat.2019.11.049
|
39 |
Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
|
40 |
Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles [J]. Scr. Mater., 2005, 52: 1075
doi: 10.1016/j.scriptamat.2005.02.016
|
41 |
Ebeling R, Ashby M F. Dispersion hardening of copper single crystals [J]. Philos. Mag., 1966, 13A: 805
|
42 |
Lee K, Park S J, Moon J, et al. β-Mn formation and aging effect on the fracture behavior of high-Mn low-density steels [J]. Scr. Mater., 2016, 124: 193
doi: 10.1016/j.scriptamat.2016.04.040
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|