Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 191-204    DOI: 10.11900/0412.1961.2022.00316
  综述 本期目录 | 过刊浏览 |
压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望
常立涛()
中国科学院上海应用物理研究所 上海 201800
Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective
CHANG Litao()
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
引用本文:

常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
Litao CHANG. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. Acta Metall Sin, 2023, 59(2): 191-204.

全文: PDF(4038 KB)   HTML
摘要: 

奥氏体不锈钢是制造压水堆主回路部件的重要结构材料。奥氏体不锈钢在压水堆核电站中的服役整体表现优异,但服役过程中仍然发生过应力腐蚀开裂事故。发生冷变形是奥氏体不锈钢部件出现应力腐蚀开裂事故的主要原因,而切削加工及加工表面的后处理是在部件表面引入冷变形的主要工艺过程。本文基于过去20年本领域国内外相关研究结果,综述了切削加工等工艺在奥氏体不锈钢表面引入的塑性变形区的显微组织与残余应力特征,以及表面变形对奥氏体不锈钢在压水堆主回路高温水环境中的腐蚀及应力腐蚀裂纹萌生行为影响的研究进展。基于这些研究,指出了不锈钢应力腐蚀裂纹萌生研究中存在的问题、可能的解决办法,并对其他亟待开展的研究做了展望。

关键词 奥氏体不锈钢压水堆主回路高温水切削加工应力腐蚀裂纹萌生慢应变速率拉伸实验    
Abstract

Austenitic stainless steels (ASSs) are important materials which are used widely in the primary circuits of pressurized water reactors (PWRs). The performance of the ASSs in PWR primary water has been outstanding. However, stress corrosion cracking cases have been identified in ASS components in the primary loop of PWR nuclear power plants since the end of 20th century. Most stress corrosion cracking cases occurred in low flow or stagnant zones in the dead-leg regions, where the primary water chemistry was contaminated with anionic impurities. Cold work has been identified to be necessary for stress corrosion cracking for components operating in locations where the water is well circulated. Machining and other surface treatments can always introduce cold work to ASS components. Therefore, considerable research efforts have been invested to understand the nature of the surface deformation layer on ASS introduced during machining processes and by other surface treatments, as well as the corrosion and stress corrosion crack initiation behaviors of the machined surfaces in simulated PWR primary water. This paper reviews the research progress on the surface deformation layer on ASSs introduced by various processes, and the effects of surface deformation on the corrosion and stress corrosion crack initiation behavior of ASSs. The key issues that remain to be solved are summarized, and possible solutions are suggested.

Key wordsaustenitic stainless steel    PWR primary water    machining    stress corrosion crack initiation    slow strain rate tensile test
收稿日期: 2022-06-27     
ZTFLH:  TG172  
作者简介: 常立涛,男,1987年生,研究员,博士
图1  奥氏体不锈钢铣削加工变形层显微组织[15,32]
图2  车削加工不锈钢深度方向残余应力分布[38]
图3  砂纸磨抛在不锈钢表面引入的变形层的显微组织[29,43]
图4  退火态316L不锈钢的抛光及铣削表面在高温水中形成的氧化物的表面形貌及其截面组织[30]
图5  退火316L不锈钢的抛光和铣削表面在高温水中形成的氧化层的显微组织[30]
图6  应力腐蚀裂纹寿命周期各阶段主要特征及影响因素[19]
图7  慢应变速率拉伸(SSRT)实验条件下退火态316L不锈钢内氧化层中出现的裂纹[15],冷轧316L不锈钢中萌生的沿晶应力腐蚀裂纹[28],以及冷轧316L不锈钢沿晶裂纹边缘晶界上的滑移台阶[65]
图8  退火316L不锈钢铣削表面沿铣削纹路萌生的裂纹及裂纹截面形貌[15]
图9  温锻304L不锈钢的抛光及铣削表面在SSRT实验条件下萌生的裂纹及裂纹扩展路径[32]
图10  热处理前、后冷轧316L不锈钢表面的铣削超细晶层的HAADF-STEM像及表面萌生的应力腐蚀裂纹[28]
图11  反应堆工况、恒定载荷及慢应变速率拉伸实验过程中材料受力示意图
1 Fujimori H, Sanchez I G, Gott K, et al. Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned, IAEA Nuclear Energy Series No. NP-T-3.13[M]. Vienna: International Atomic Energy Agency, 2011: 5
2 Guo S, Han E H, Wang H T, et al. Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant[J]. Acta Metall. Sin., 2017, 53: 455
2 郭 舒, 韩恩厚, 王海涛 等. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53: 455
3 Deng P, Sun C, Peng Q J, et al. Study on irradiation assisted stress corrosion cracking of nuclear grade 304 stainless steel[J]. Acta Metall. Sin., 2019, 55: 349
doi: 10.11900/0412.1961.2018.00359
3 邓 平, 孙 晨, 彭群家 等. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55: 349
4 Tice D R, Addepalli V, Mottershead K J, et al. Microstructural effects on stress corrosion initiation in austenitic stainless steel in PWR environments[A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2019: 775
5 Tribouilloy L, Vaillant F, Olive J M, et al. Stress corrosion cracking on cold-worked austenitic stainless steels in PWR environment[J]. Adv. Mater. Sci., 2007, 7: 61
6 Couvant T, Legras L, Pokor C, et al. Investigations on the mechanisms of PWSCC of strain hardened austenitic stainless steels[A]. 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Whistler, BC, Canada: Canadian Nuclear Society, 2007: 1
7 Huguenin P, Vaillant F, Couvant T, et al. EDF program on SCC initiation of cold-worked stainless steels in primary water[A]. Corrosion from the Nano Scale to the Plant[C]. Nice, France: The European Corrosion Congress, 2009: INIS-FR-10-Eur-09-8048
8 Wright D M. The effect of cold rolling on the susceptibility of austenitic stainless steel to stress corrosion cracking in primary circuit pressurised water reactor environment[D]. Manchester: University of Manchester, 2012
9 Hosler R, Fyfitch S, Malikowski H, et al. Review of stress corrosion cracking of pressure boundary stainless steel in pressurized water reactors and the need for long-term industry guidance[A]. 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Asheville, North Carolina, USA: NACE International, 2013: 1468
10 Nouraei S, Tice D R, Mottershead K J, et al. Effects of thermo-mechanical treatments on deformation behavior and IGSCC susceptibility of stainless steels in PWR primary water chemistry[A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2011: 2381
11 Arioka K, Yamada T, Terachi T, et al. Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion, 2007, 63: 1114
doi: 10.5006/1.3278329
12 Couvant T, Legras L, Vaillant F, et al. Effect of strain-hardening on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360oC[A]. 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Salt Lake City, USA: TMS, 2005: 1069
13 Song M, Field K G, Cox R M, et al. Microstructural characterization of cold-worked 316 stainless steel flux thimble tubes irradiated up to 100 dpa in a commercial pressurized water reactor[J]. J. Nucl. Mater., 2020, 541: 152400
doi: 10.1016/j.jnucmat.2020.152400
14 Tice D R, Nouraei S, Mottershead K J, et al. Effects of cold work and sensitization on stress corrosion cracking of austenitic stainless steels in PWR Primary coolant conditions[A]. 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: American Nuclear Society, 2009: 158
15 Chang L T, Burke M G, Scenini F. Stress corrosion crack initiation in machined type 316L austenitic stainless steel in simulated pressurized water reactor primary water[J]. Corros. Sci., 2018, 138: 54
doi: 10.1016/j.corsci.2018.04.003
16 Andresen P L, Morra M M. IGSCC of non-sensitized stainless steels in high temperature water[J]. J. Nucl. Mater., 2008, 383: 97
doi: 10.1016/j.jnucmat.2008.08.005
17 Saukkonen T, Aalto M, Virkkunen I, et al. Plastic strain and residual stress distributions in an AISI 304 stainless steel BWR pipe weld[A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2011: 2351
18 Yonezawa T, Watanabe M, Hashimoto A, et al. Effect of strain hardened inner surface layers on stress corrosion cracking of type 316 stainless steel in simulated PWR primary water[J]. Metall. Mater. Trans., 2019, 50A: 2462
19 Staehle R W. Quantitative micro-nano (QMN) approach to SCC mechanism and prediction-starting a third meeting[A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2011: 1535
20 Ming H L, Zhang Z M, Wang J Z, et al. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR[J]. Appl. Surf. Sci., 2015, 337: 81
doi: 10.1016/j.apsusc.2015.02.066
21 Olszta M J, Thomas L E, Asano K, et al. Crack initiation precursors originating from surface grinding[A]. 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: American Nuclear Society, 2009: 549
22 Kaneda J, Tamako H, Ishibashi R, et al. Effects of surface treatments on microstructure, hardness and residual stress in type 316L stainless steel[A]. 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: American Nuclear Society, 2009: 791
23 Ziemniak S E, Hanson M, Sander P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corros. Sci., 2008, 50: 2465
doi: 10.1016/j.corsci.2008.06.032
24 Zhang W Q, Fang K W, Hu Y J, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel[J]. Corros. Sci., 2016, 108: 173
doi: 10.1016/j.corsci.2016.03.008
25 Wang S Y, Hu Y J, Fang K W, et al. Effect of surface machining on the corrosion behaviour of 316 austenitic stainless steel in simulated PWR water[J]. Corros. Sci., 2017, 126: 104
doi: 10.1016/j.corsci.2017.06.019
26 Cissé S, Laffont L, Tanguy B, et al. Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water[J]. Corros. Sci., 2012, 56: 209
doi: 10.1016/j.corsci.2011.12.007
27 Huin N, Calonne O, Herbst M, et al. SCC of austenitic stainless steels under off-normal water chemistry and surface conditions[A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2019: 849
28 Chang L T, Mukahiwa K, Duff J, et al. The effect of low temperature heat treatment on stress corrosion crack initiation in machined 316L stainless steel in high-temperature hydrogenated water[J]. Scr. Mater., 2021, 195: 113742
doi: 10.1016/j.scriptamat.2021.113742
29 Chang L T, Burke M G, Scenini F. Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water[J]. Scr. Mater., 2019, 164: 1
doi: 10.1016/j.scriptamat.2019.01.032
30 Chang L T, Mukahiwa K, Volpe L, et al. Effect of machining on oxide development in type 316L stainless steel in high-temperature hydrogenated water[J]. Corros. Sci., 2021, 186: 109444
doi: 10.1016/j.corsci.2021.109444
31 Chang L T, Burke M G, Mukahiwa K, et al. The effect of martensite on stress corrosion crack initiation of austenitic stainless steels in high-temperature hydrogenated water[J]. Corros. Sci., 2021, 189: 109600
doi: 10.1016/j.corsci.2021.109600
32 Chang L T, Volpe L, Wang Y L, et al. Effect of machining on stress corrosion crack initiation in warm-forged type 304L stainless steel in high temperature water[J]. Acta Mater., 2019, 165: 203
doi: 10.1016/j.actamat.2018.11.046
33 Chang L T, Duff J, Burke M G, et al. SCC Initiation in the machined austenitic stainless steel 316L in simulated PWR primary water[A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2019: 811
34 Liao Z R, La Monaca A, Murray J, et al. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms[J]. Int. J. Mach. Tools Manuf., 2021, 162: 103687
doi: 10.1016/j.ijmachtools.2020.103687
35 M'Saoubi R, Outeiro J C, Changeux B, et al. Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels[J]. J. Mater. Process. Technol., 1999, 96: 225
doi: 10.1016/S0924-0136(99)00359-3
36 Zhang W Q, Wang X L, Hu Y J, et al. Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel[J]. Int. J. Mach. Tools Manuf., 2018, 130-131: 36
doi: 10.1016/j.ijmachtools.2018.03.008
37 Jang D Y, Watkins T R, Kozaczek K J, et al. Surface residual stresses in machined austenitic stainless steel[J]. Wear, 1996, 194: 168
doi: 10.1016/0043-1648(95)06838-4
38 Outeiro J C, Pina J C, M'Saoubi R, et al. Analysis of residual stresses induced by dry turning of difficult-to-machine materials[J]. CIRP Ann., 2008, 57: 77
doi: 10.1016/j.cirp.2008.03.076
39 La Monaca A, Axinte D A, Liao Z R, et al. Towards understanding the thermal history of microstructural surface deformation when cutting a next generation powder metallurgy nickel-base superalloy[J]. Int. J. Mach. Tools Manuf., 2021, 168: 103765
doi: 10.1016/j.ijmachtools.2021.103765
40 Das A, Roychowdhury S, Kain V. Effect of surface state of austenitic type 304L SS on oxide characteristics formed in high temperature high pressure water[J]. J. Nucl. Mater., 2022, 564: 153672
doi: 10.1016/j.jnucmat.2022.153672
41 Yan H L, Wang J Q, Zhang Z M, et al. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water[J]. J. Mater. Sci. Technol., 2022, 122: 219
doi: 10.1016/j.jmst.2021.04.081
42 Turnbull A, Mingard K, Lord J D, et al. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure[J]. Corros. Sci., 2011, 53: 3398
doi: 10.1016/j.corsci.2011.06.020
43 Jaffré K, Abe H, Ter-Ovanessian B, et al. Influence of mechanical surface treatments on oxide properties formed on 304L stainless steel in simulated BWR and PWR primary water[J]. J. Nucl. Mater., 2021, 556: 153258
doi: 10.1016/j.jnucmat.2021.153258
44 Cui T M, Xu X H, Pan D, et al. Effects of surface treatments and temperature on the oxidation behavior of 308L stainless steel cladding in hydrogenated high-temperature water[J]. J. Nucl. Mater., 2022, 565: 153741
doi: 10.1016/j.jnucmat.2022.153741
45 Ming T Y, Xue H, Zhang T, et al. Improving the corrosion and stress corrosion cracking resistance of 316L stainless steel in high temperature water by water jet cavitation peening[J]. Surf. Coat. Technol., 2022, 438: 128420
doi: 10.1016/j.surfcoat.2022.128420
46 Soulas R, Cheynet M, Rauch E, et al. TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment[J]. J. Mater. Sci., 2013, 48: 2861
doi: 10.1007/s10853-012-6975-0
47 Ramachandran D, Egoavil R, Crabbe A, et al. TEM and AES investigations of the natural surface nano‐oxide layer of an AISI 316L stainless steel microfibre[J]. J. Microsc., 2016, 264: 207
doi: 10.1111/jmi.12434
48 Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corros. Sci., 2002, 44: 2209
doi: 10.1016/S0010-938X(02)00004-5
49 Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—Effect of chromium content in alloys and dissolved hydrogen[J]. J. Nucl. Sci. Technol., 2008, 45: 975
doi: 10.1080/18811248.2008.9711883
50 Lozano-Perez S, Yamada T, Terachi T, et al. Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content[J]. Acta Mater., 2009, 57: 5361
doi: 10.1016/j.actamat.2009.07.040
51 Lozano-Perez S, Kruska K, Iyengar I, et al. The role of cold work and applied stress on surface oxidation of 304 stainless steel[J]. Corros. Sci., 2012, 56: 78
doi: 10.1016/j.corsci.2011.11.021
52 Han G D, Lu Z P, Ru X K, et al. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment[J]. J. Nucl. Mater., 2015, 467: 194
doi: 10.1016/j.jnucmat.2015.09.029
53 Das A, Roychowdhury S, Kain V. Establishing the passive film stability formed at different depths from the surface of machined type 304 L SS[J]. Corros. Sci., 2020, 176: 109022
doi: 10.1016/j.corsci.2020.109022
54 Kuang W J, Was G S. The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690[J]. Corros. Sci., 2015, 97: 107
doi: 10.1016/j.corsci.2015.04.020
55 Kuang W J, Was G S. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water[J]. Scr. Mater., 2015, 107: 107
doi: 10.1016/j.scriptamat.2015.05.033
56 Wang M, Song M, Lear C R, et al. Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals[J]. J. Nucl. Mater., 2019, 515: 52
doi: 10.1016/j.jnucmat.2018.12.015
57 Zhong X Y, Bali S C, Shoji T. Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment[J]. Corros. Sci., 2017, 115: 106
doi: 10.1016/j.corsci.2016.11.019
58 Scenini F, Govender K, Lyon S, et al. An investigation of SCC susceptibility of virgin and ruthenium-modified austenitic stainless steels in high-temperature oxygenated water by SSRT testing[A]. CORROSION 2012[C]. Salt Lake City, UT, USA: NACE International, 2012: 4069
59 Zhong X Y, Bali S C, Shoji T. Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water[J]. Corros. Sci., 2017, 118: 143
doi: 10.1016/j.corsci.2017.02.003
60 Du D H, Chen K, Yu L, et al. SCC crack growth rate of cold worked 316L stainless steel in PWR environment[J]. J. Nucl. Mater., 2015, 456: 228
doi: 10.1016/j.jnucmat.2014.09.054
61 Huang Q, Charles Y, Duhamel C, et al. Influence of the combination of microstructure and mechanical fields on stress corrosion cracking initiation of cold-worked austenitic stainless steels[A]. 19th International Conference on on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Boston, MA, USA: American Nuclear Society, 2019: 967
62 Roychowdhury S, Kain V, Neogy S, et al. Understanding the effect of nitrogen in austenitic stainless steel on the intergranular stress corrosion crack growth rate in high temperature pure water[J]. Acta Mater., 2012, 60: 610
doi: 10.1016/j.actamat.2011.09.053
63 Meng F J, Lu Z P, Shoji T, et al. Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations[J]. Corros. Sci., 2011, 53: 2558
doi: 10.1016/j.corsci.2011.04.013
64 Chen J J, Lu Z P, Xiao Q, et al. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments[J]. J. Nucl. Mater., 2016, 472: 1
doi: 10.1016/j.jnucmat.2016.01.018
65 Terachi T, Fujii K, Arioka K. Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320oC[J]. J. Nucl. Sci. Technol., 2005, 42: 225
doi: 10.1080/18811248.2005.9726383
66 Guerre C, Raquet O, Herms E, et al. SCC crack growth rate of cold-worked austenitic stainless steels in PWR primary water conditions[A]. 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Whistler, BC, Canada: Canadian Nuclear Society, 2007: 1
67 Kumagai M, Curd M E, Soyama H, et al. Depth-profiling of residual stress and microstructure for austenitic stainless steel surface treated by cavitation, shot and laser peening[J]. Mater. Sci. Eng., 2021, A813: 141037
68 Volpe L, Burke M G, Scenini F. Correlation between grain boundary migration and stress corrosion cracking of alloy 600 in hydrogenated steam[J]. Acta Mater., 2020, 186: 454
doi: 10.1016/j.actamat.2020.01.020
69 Volpe L, Burke M G, Scenini F. Oxidation behaviour of solution-annealed and thermally-treated Alloy 690 in low pressure H2-steam[J]. Corros. Sci., 2020, 167: 108514
doi: 10.1016/j.corsci.2020.108514
70 Volpe L, Bertali G, Curioni M, et al. Replicating PWR primary water conditions in low pressure H2/steam environment to study alloy 600 oxidation processes[J]. J. Electrochem. Soc., 2019, 166: C1
doi: 10.1149/2.0081902jes
71 Zhai Z Q, Toloczko M B, Olszta M J, et al. Stress corrosion crack initiation of alloy 600 in PWR primary water[J]. Corros. Sci., 2017, 123: 76
doi: 10.1016/j.corsci.2017.04.013
72 Zhai Z Q, Toloczko M B, Bruemmer S M. Effect of material condition on stress corrosion crack initiation of cold-worked alloy 600 in simulated PWR primary water[A]. 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Boston, MA, USA: American Nuclear Society, 2019: 539
73 Zhai Z Q, Olszta M J, Toloczko M B, et al. Crack initiation behavior of cold-worked alloy 690 in simulated PWR primary water—Role of starting microstructure, applied stress and cold work on precursor damage evolution[A]. 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Boston, MA, USA: American Nuclear Society, 2019: 373
74 Zhang W Q, Wang X L, Wang S Y, et al. Combined effects of machining-induced residual stress and external load on SCC initiation and early propagation of 316 stainless steel in high temperature high pressure water[J]. Corros. Sci., 2021, 190: 109644
doi: 10.1016/j.corsci.2021.109644
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[3] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[4] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[5] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[6] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[10] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[11] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[12] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[13] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[14] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.
[15] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.