Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 45-53    DOI: 10.11900/0412.1961.2021.00342
  研究论文 本期目录 | 过刊浏览 |
纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为
潘庆松, 崔方, 陶乃镕, 卢磊()
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel
PAN Qingsong, CUI Fang, TAO Nairong, LU Lei()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
Qingsong PAN, Fang CUI, Nairong TAO, Lei LU. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. Acta Metall Sin, 2022, 58(1): 45-53.

全文: PDF(3441 KB)   HTML
摘要: 

利用动态塑性变形工艺制备块体纳米孪晶强化304奥氏体不锈钢样品并研究其低周疲劳行为。应变控制疲劳测试发现,包含30% (体积分数)纳米孪晶结构的304奥氏体不锈钢具有优异的低周疲劳寿命和高循环应力水平,同时循环软化程度随应变幅增加而减弱,与传统纳米结构金属材料“应变幅愈高,软化程度愈明显”的趋势截然不同。优异的低周疲劳性能主要得益于高强度纳米孪晶晶粒优异的结构稳定性以及其与相邻再结晶晶粒协同塑性变形,有效抑制应变局域化和疲劳裂纹萌生。

关键词 纳米孪晶奥氏体不锈钢循环响应疲劳寿命应变非局域化    
Abstract

Engineering nano-scale twin boundaries has been recognized as a novel strategy to achieve a superior combination of tensile strength, ductility, and fatigue limit in metallic materials. However, to date, the strain-controlled fatigue behavior of nanotwin (NT)-strengthened metals is still rarely explored, most possibly owing to the difficulty in preparing bulk fatigue samples. In this work, a bulk heterogeneously structured 304 stainless steel (304 SS) containing 30% volume fraction of NT bundles embedded in the micrometer-sized grain matrix was prepared and studied under constant plastic strain amplitude-controlled fatigue tests. A considerable fatigue life and much higher cyclic flow stress level, while maintaining a weaker degree of cyclic softening at larger strain amplitude, was achieved in NT-strengthened 304 SS, compared with its coarse-grained counterpart in the same strain-controlled fatigue tests. This is fundamentally distinct from the more obvious softening behavior of conventional nanostructured metals induced by strain localization at larger strain amplitude. Such exceptional low-cycle fatigue properties were attributed to the presence of a high-strength NT structure associated with novel mechanical stability and its co-deformation with surrounding grains, effectively suppressing strain localization and fatigue crack initiation.

Key wordsnanotwin    austenitic stainless steel    cyclic response    fatigue life    strain delocalization
收稿日期: 2021-08-17     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51931010);中国科学院前沿科学重点研究计划项目;HZ2029,辽宁省兴辽英才计划项目(XLYC1802026);中国科学院青年创新促进会项目(2019196)
作者简介: 潘庆松,男,1985年生,研究员
图1  纳米孪晶强化304不锈钢(304 SS)的微观结构
图 2  纳米孪晶强化304 SS和粗晶304 SS的应变疲劳性能
图3  纳米孪晶强化304 SS表面疲劳形貌特征
图4  纳米孪晶强化304 SS表面三维疲劳形貌特征
图5  纳米孪晶强化304 SS在低塑性应变幅(0.05%)疲劳时的微观结构特征
图6  纳米孪晶强化304 SS在高应变幅疲劳(0.25%)时的微观结构特征和孪晶片层厚度
1 Suresh S . Fatigue of Materials [M]. 2nd Ed., Cambridge, UK: Cambridge University Press, 1998: 679
2 Pineau A , Benzerga A A , Pardoen T . Failure of metals III: Fracture and fatigue of nanostructured metallic materials [J]. Acta Mater., 2016, 107: 508
3 Meyers M A , Chawla K K . Mechanical Behavior of Materials [M]. 2nd Ed., Cambridge, UK: Cambridge University Press, 2009: 739
4 Li Q , Yan F K , Tao N R , et al . Deformation compatibility between nanotwinned and recrystallized grains enhances resistance to interface cracking in cyclic loaded stainless steel [J]. Acta Mater., 2019, 165: 87
5 Majumdar S , Roy S , Ray K K . Fatigue performance of dual-phase steels for automotive wheel application [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 315
6 Wang Z G , Wang G N , Ke W , et al . Influence of the martensite content on the fatigue behavior of a dual-phase steel [J]. Mater. Sci. Eng., 1987, 91: 39
7 Anbarlooie B , Hosseini-Toudeshky H , Kadkhodapour J . High cycle fatigue micromechanical behavior of dual phase steel: Damage initiation, propagation and final failure [J]. Mech. Mater., 2017, 106: 8
8 Böhner A , Niendorf T , Amberger D , et al . Martensitic transformation in ultrafine-grained stainless steel AISI 304L under monotonic and cyclic loading [J]. Metals, 2012, 2: 56
9 Kaneko Y , Hayashi S , Vinogradov A . Cyclic response of SUS316L stainless steel processed by ECAP [J]. Mater. Trans., 2013, 54: 1612
10 Renk O , Hohenwarter A , Pippan R . Cyclic deformation behavior of a 316L austenitic stainless steel processed by high pressure torsion [J]. Adv. Eng. Mater., 2012, 14: 948
11 Ueno H , Kakihata K , Kaneko Y , et al . Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel [J]. Acta Mater., 2011, 59: 7060
12 Höppel H W , Zhou Z M , Mughrabi H , et al . Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper [J]. Philos. Mag., 2002, 82A: 1781
13 Mughrabi H , Höppel H W , Kautz M . Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation [J]. Scr. Mater., 2004, 51: 807
14 Kunz L , Lukáš P , Svoboda M . Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper [J]. Mater. Sci. Eng., 2006, A424: 97
15 Mughrabi H , Höppel H W . Cyclic deformation and fatigue properties of very fine-grained metals and alloys [J]. Int. J. Fatigue, 2010, 32: 1413
16 Lu K . Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 1
17 Lu K , Lu L , Suresh S . Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
18 Sansoz F , Lu K , Zhu T , et al . Strengthening and plasticity in nanotwinned metals [J]. MRS Bull., 2016, 41: 292
19 Zhang X , Wang H , Chen X H , et al . High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins [J]. Appl. Phys. Lett., 2006, 88: 173116
20 Lu L , Chen X , Huang X , et al . Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
21 Lu L , Shen Y F , Chen X H , et al . Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
22 Lu L , You Z S . Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metall. Sin., 2014, 50: 129
22 卢 磊, 尤泽升 . 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50: 129
23 Hodge A M , Furnish T A , Shute C J , et al . Twin stability in highly nanotwinned Cu under compression, torsion and tension [J]. Scr. Mater., 2012, 66: 872
24 Pan Q S , Lu L . Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins [J]. Acta Mater., 2014, 81: 248
25 Pan Q S , Lu Q H , Lu L . Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2013, 61: 1383
26 Pan Q S , Zhou H F , Lu Q H , et al . History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551: 214
27 Li X Y , Dao M , Eberl C , et al . Fracture, fatigue, and creep of nanotwinned metals [J]. MRS Bull., 2016, 41: 298
28 Lu L , Pan Q S , Hattar K , et al . Fatigue and fracture of nanostructured metals and alloys [J]. MRS Bull., 2021, 46: 258
29 You Z S , Li X Y , Gui L J , et al . Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
30 Lu K , Yan F K , Wang H T , et al . Strengthening austenitic steels by using nanotwinned austenitic grains [J]. Scr. Mater., 2012, 66: 878
31 Yan F K , Liu G Z , Tao N R , et al . Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
32 Yi H Y , Yan F K , Tao N R , et al . Comparison of strength-ductility combinations between nanotwinned austenite and martensite-austenite stainless steels [J]. Mater. Sci. Eng., 2015, A647: 152
33 Yi H Y , Yan F K , Tao N R , et al . Work hardening behavior of nanotwinned austenitic grains in a metastable austenitic stainless steel [J]. Scr. Mater., 2016, 114: 133
34 Cui F , Pan Q S , Tao N R , et al . Enhanced high-cycle fatigue resistance of 304 austenitic stainless steel with nanotwinned grains [J]. Int. J. Fatigue, 2021, 143: 105994
35 Li Q , Yan F K , Tao N R . Enhanced fatigue damage resistance of nanotwinned austenitic grains in a nanotwinned stainless steel [J]. Scr. Mater., 2017, 136: 59
36 Meyers M A , Mishra A , Benson D J . Mechanical properties of nanocrystalline materials [J]. Prog. Mater Sci., 2006, 51: 427
37 Mughrabi H . Fatigue, an everlasting materials problem-still en vogue [J]. Proc. Eng., 2010, 2: 3
38 Peralta P , Laird C . Fatigue of metals [A]. Physical Metallurgy [M]. 5th Ed., Oxford: Elsevier, 2014: 1765
39 Bayerlein M , Christ H J , Mughrabi H . Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel [J]. Mater. Sci. Eng., 1989, A114: L11
40 Kelly P M . The martensite transformation in steels with low stacking fault energy [J]. Acta Metall., 1965, 13: 635
41 Krupp U , Roth I , Christ H J , et al . In situ SEM observation and analysis of martensitic transformation during short fatigue crack propagation in metastable austenitic steel [J]. Adv. Eng. Mater., 2010, 12: 255
42 Maier H J , Schneeweiss O , Donth B . Kinetics of fatigue-induced phase transformation in a metastable austenitic 304 L-type steel at low temperatures [J]. Scr. Metall. Mater., 1993, 29: 521
43 Yan F K , Tao N R , Archie F , et al . Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains [J]. Acta Mater., 2014, 81: 487
44 Shute C J , Myers B D , Xie S , et al . Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning [J]. Scr. Mater., 2009, 60: 1073
45 Shute C J , Myers B D , Xie S , et al . Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins [J]. Acta Mater., 2011, 59: 4569
46 Hong C S , Tao N R , Huang X , et al . Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation [J]. Acta Mater., 2010, 58: 3103
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[7] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[9] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[10] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[11] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[12] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
[13] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[14] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[15] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.