|
|
纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为 |
潘庆松, 崔方, 陶乃镕, 卢磊( ) |
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel |
PAN Qingsong, CUI Fang, TAO Nairong, LU Lei( ) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
Qingsong PAN,
Fang CUI,
Nairong TAO,
Lei LU.
Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. Acta Metall Sin, 2022, 58(1): 45-53.
1 |
Suresh S . Fatigue of Materials [M]. 2nd Ed., Cambridge, UK: Cambridge University Press, 1998: 679
|
2 |
Pineau A , Benzerga A A , Pardoen T . Failure of metals III: Fracture and fatigue of nanostructured metallic materials [J]. Acta Mater., 2016, 107: 508
|
3 |
Meyers M A , Chawla K K . Mechanical Behavior of Materials [M]. 2nd Ed., Cambridge, UK: Cambridge University Press, 2009: 739
|
4 |
Li Q , Yan F K , Tao N R , et al . Deformation compatibility between nanotwinned and recrystallized grains enhances resistance to interface cracking in cyclic loaded stainless steel [J]. Acta Mater., 2019, 165: 87
|
5 |
Majumdar S , Roy S , Ray K K . Fatigue performance of dual-phase steels for automotive wheel application [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 315
|
6 |
Wang Z G , Wang G N , Ke W , et al . Influence of the martensite content on the fatigue behavior of a dual-phase steel [J]. Mater. Sci. Eng., 1987, 91: 39
|
7 |
Anbarlooie B , Hosseini-Toudeshky H , Kadkhodapour J . High cycle fatigue micromechanical behavior of dual phase steel: Damage initiation, propagation and final failure [J]. Mech. Mater., 2017, 106: 8
|
8 |
Böhner A , Niendorf T , Amberger D , et al . Martensitic transformation in ultrafine-grained stainless steel AISI 304L under monotonic and cyclic loading [J]. Metals, 2012, 2: 56
|
9 |
Kaneko Y , Hayashi S , Vinogradov A . Cyclic response of SUS316L stainless steel processed by ECAP [J]. Mater. Trans., 2013, 54: 1612
|
10 |
Renk O , Hohenwarter A , Pippan R . Cyclic deformation behavior of a 316L austenitic stainless steel processed by high pressure torsion [J]. Adv. Eng. Mater., 2012, 14: 948
|
11 |
Ueno H , Kakihata K , Kaneko Y , et al . Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel [J]. Acta Mater., 2011, 59: 7060
|
12 |
Höppel H W , Zhou Z M , Mughrabi H , et al . Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper [J]. Philos. Mag., 2002, 82A: 1781
|
13 |
Mughrabi H , Höppel H W , Kautz M . Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation [J]. Scr. Mater., 2004, 51: 807
|
14 |
Kunz L , Lukáš P , Svoboda M . Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper [J]. Mater. Sci. Eng., 2006, A424: 97
|
15 |
Mughrabi H , Höppel H W . Cyclic deformation and fatigue properties of very fine-grained metals and alloys [J]. Int. J. Fatigue, 2010, 32: 1413
|
16 |
Lu K . Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 1
|
17 |
Lu K , Lu L , Suresh S . Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
|
18 |
Sansoz F , Lu K , Zhu T , et al . Strengthening and plasticity in nanotwinned metals [J]. MRS Bull., 2016, 41: 292
|
19 |
Zhang X , Wang H , Chen X H , et al . High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins [J]. Appl. Phys. Lett., 2006, 88: 173116
|
20 |
Lu L , Chen X , Huang X , et al . Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
|
21 |
Lu L , Shen Y F , Chen X H , et al . Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
|
22 |
Lu L , You Z S . Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metall. Sin., 2014, 50: 129
|
22 |
卢 磊, 尤泽升 . 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50: 129
|
23 |
Hodge A M , Furnish T A , Shute C J , et al . Twin stability in highly nanotwinned Cu under compression, torsion and tension [J]. Scr. Mater., 2012, 66: 872
|
24 |
Pan Q S , Lu L . Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins [J]. Acta Mater., 2014, 81: 248
|
25 |
Pan Q S , Lu Q H , Lu L . Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2013, 61: 1383
|
26 |
Pan Q S , Zhou H F , Lu Q H , et al . History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551: 214
|
27 |
Li X Y , Dao M , Eberl C , et al . Fracture, fatigue, and creep of nanotwinned metals [J]. MRS Bull., 2016, 41: 298
|
28 |
Lu L , Pan Q S , Hattar K , et al . Fatigue and fracture of nanostructured metals and alloys [J]. MRS Bull., 2021, 46: 258
|
29 |
You Z S , Li X Y , Gui L J , et al . Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
|
30 |
Lu K , Yan F K , Wang H T , et al . Strengthening austenitic steels by using nanotwinned austenitic grains [J]. Scr. Mater., 2012, 66: 878
|
31 |
Yan F K , Liu G Z , Tao N R , et al . Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
|
32 |
Yi H Y , Yan F K , Tao N R , et al . Comparison of strength-ductility combinations between nanotwinned austenite and martensite-austenite stainless steels [J]. Mater. Sci. Eng., 2015, A647: 152
|
33 |
Yi H Y , Yan F K , Tao N R , et al . Work hardening behavior of nanotwinned austenitic grains in a metastable austenitic stainless steel [J]. Scr. Mater., 2016, 114: 133
|
34 |
Cui F , Pan Q S , Tao N R , et al . Enhanced high-cycle fatigue resistance of 304 austenitic stainless steel with nanotwinned grains [J]. Int. J. Fatigue, 2021, 143: 105994
|
35 |
Li Q , Yan F K , Tao N R . Enhanced fatigue damage resistance of nanotwinned austenitic grains in a nanotwinned stainless steel [J]. Scr. Mater., 2017, 136: 59
|
36 |
Meyers M A , Mishra A , Benson D J . Mechanical properties of nanocrystalline materials [J]. Prog. Mater Sci., 2006, 51: 427
|
37 |
Mughrabi H . Fatigue, an everlasting materials problem-still en vogue [J]. Proc. Eng., 2010, 2: 3
|
38 |
Peralta P , Laird C . Fatigue of metals [A]. Physical Metallurgy [M]. 5th Ed., Oxford: Elsevier, 2014: 1765
|
39 |
Bayerlein M , Christ H J , Mughrabi H . Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel [J]. Mater. Sci. Eng., 1989, A114: L11
|
40 |
Kelly P M . The martensite transformation in steels with low stacking fault energy [J]. Acta Metall., 1965, 13: 635
|
41 |
Krupp U , Roth I , Christ H J , et al . In situ SEM observation and analysis of martensitic transformation during short fatigue crack propagation in metastable austenitic steel [J]. Adv. Eng. Mater., 2010, 12: 255
|
42 |
Maier H J , Schneeweiss O , Donth B . Kinetics of fatigue-induced phase transformation in a metastable austenitic 304 L-type steel at low temperatures [J]. Scr. Metall. Mater., 1993, 29: 521
|
43 |
Yan F K , Tao N R , Archie F , et al . Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains [J]. Acta Mater., 2014, 81: 487
|
44 |
Shute C J , Myers B D , Xie S , et al . Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning [J]. Scr. Mater., 2009, 60: 1073
|
45 |
Shute C J , Myers B D , Xie S , et al . Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins [J]. Acta Mater., 2011, 59: 4569
|
46 |
Hong C S , Tao N R , Huang X , et al . Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation [J]. Acta Mater., 2010, 58: 3103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|