Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 767-779    DOI: 10.11900/0412.1961.2020.00286
  研究论文 本期目录 | 过刊浏览 |
预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能
戴进财, 闵小华(), 周克松, 姚凯, 王伟强
大连理工大学 材料科学与工程学院 大连 116024
Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy
DAI Jincai, MIN Xiaohua(), ZHOU Kesong, YAO Kai, WANG Weiqiang
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
Jincai DAI, Xiaohua MIN, Kesong ZHOU, Kai YAO, Weiqiang WANG. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. Acta Metall Sin, 2021, 57(6): 767-779.

全文: PDF(16178 KB)   HTML
摘要: 

基于热锻/热轧工艺以及均匀化热处理制备了孪生与位错滑移耦合变形的Ti-10Mo-1Fe/3Fe层状合金,利用LSCM、XRD、SEM、SEM-EDS、EBSD、Vickers硬度计和拉伸试验机等研究了预变形与等温时效耦合作用对层状合金力学性能的影响。结果表明,经拉伸预变形和等温时效处理后,该合金具有{332}<113>孪晶和位错滑移带多层交替变形组织,且呈现出较高的屈服强度和较大的均匀伸长率。等温时效析出的ω相提高了β相稳定性,使得变形初期的塑性变形方式由位错滑移主导,这是其具有较高屈服强度的主要原因。预变形诱发的孪晶推迟了屈服之后颈缩的快速发生,而且后续变形过程中进一步激活的孪晶引起的动态晶粒细化效应及其与层界面的交互作用,使其具有较大的均匀伸长率。因此,在孪生与位错滑移耦合变形层状合金的基础上,进一步通过预变形诱发{332}<113>孪晶和等温时效析出ω相的双重耦合效应,可在较大范围内调控β型钛合金的强塑性匹配。

关键词 β型钛合金层状变形组织预变形诱发{332}<113>孪晶等温ω力学性能    
Abstract

Owing to their low density, high specific strength, biocompatibility, and good corrosion resistance, titanium and its alloys have been widely used in the aerospace, biomedical, and marine engineering fields. As engineering applications of titanium alloys continue to develop, especially in special engineering projects, the service safety and stability of titanium alloys must be satisfied under extremely complex conditions. Unfortunately, traditional titanium alloys usually exhibit low plastic-deformation ability and no significant work hardening behavior, which limits their applicability. Improving both the strength and ductility of these materials is expected to broaden their engineering applications. In recent years, β-type (body-centered cubic) titanium alloys have shown good formability and impact toughness, by virtue of their diverse plastic deformation modes and excellent ageing strengthening. Therefore, they are promising candidates for titanium alloys with a good strength-ductility combination. In this work, a multilayered Ti-10Mo-1Fe/3Fe alloy was manufactured by a multi-pass hot rolling and heat treatment, and the coupling effects of pre-strain and isothermal ageing on the mechanical properties of the alloy were studied by various techniques: laser scanning confocal microscopy, XRD, SEM, SEM-EDS, EBSD, a Vickers hardness tester, and a tensile testing machine. After pre-strain and isothermal ageing, the alloy exhibited {332}<113> twins and slip bands alternately multilayered deformation microstructures. The alloy demonstrated a relatively high yield strength and large uniform elongation. The high yield strength resulted from the initial plastic deformation, which was dominated by dislocation slips due to isothermal ω-phase precipitation. The early onset of plastic instability after yielding was hindered by the pre-strain induced twins, and the uniform elongation was enhanced not only by the dynamic Hall-Petch effect caused by further twinning activation, but also by interactions between the twin and layer-interface. As demonstrated on this multilayered alloy with twinning and dislocation-slip coupled deformation, the strength-ductility combination in β-type titanium alloys can be controlled through the coupling effect of pre-strain induced {332}<113> twins and the subsequently precipitated ω phase.

Key wordsβ-type titanium alloy    multilayered deformation microstructure    pre-strain induced {332}<113> twin    isothermal ω-phase    mechanical property
收稿日期: 2020-07-31     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2016YFB1100103)
作者简介: 戴进财,男,1995年生,硕士
图1  Ti-10Mo-1Fe/3Fe层状合金ST、STA、STD和STDA试样的示意图
图2  Ti-10Mo-1Fe/3Fe层状合金拉伸试样的示意图
图3  Ti-10Mo-1Fe、Ti-10Mo-3Fe和Ti-15Mo合金ST及STA (473~673 K)试样的Vickers硬度,及Ti-10Mo-1Fe合金ST、STA (623 K)试样的压痕SEM像
图4  Ti-10Mo-1Fe和Ti-10Mo-3Fe合金ST、STA和STDA试样的名义应力-应变曲线和真应力-应变及加工硬化率曲线
图5  Ti-10Mo-1Fe和Ti-10Mo-3Fe合金ST试样不同拉伸变形量下的原位LSCM像
图6  Ti-10Mo-1Fe和Ti-10Mo-3Fe合金ST、STD、STDA和STDA-5%试样的原位LSCM像
图7  Ti-10Mo-1Fe和Ti-10Mo-3Fe合金ST (拉伸应变1%~5%)、STD、STDA和STDA-5%试样的变形组织面积分数
图8  Ti-10Mo-1Fe和Ti-10Mo-3Fe合金ST、STD、STA和STDA试样的XRD谱及β相晶格常数
图9  Ti-10Mo-1Fe/3Fe层状合金ST试样的二次电子像和合金元素EDS线分析图
图10  Ti-10Mo-1Fe/3Fe层状合金ST和STA (473~673 K)以及ST、STA、STD和STDA试样的Vickers硬度
图11  Ti-10Mo-1Fe/3Fe层状合金ST、STA和STDA试样的名义应力-应变曲线和真应力-应变及加工硬化率曲线
图12  Ti-10Mo-1Fe、Ti-10Mo-3Fe合金和Ti-10Mo-1Fe/3Fe层状合金不同试样的拉伸性能及β钛合金塑性变形方式与力学性能的关系
图13  Ti-10Mo-1Fe/3Fe层状合金ST试样不同变形量下的原位LSCM像和5%拉伸变形量下的EBSD像(a-d) 0, 3%, and 5% strain, respectively(e) image quality (IQ) map(f) inverse pole figure (IPF) map(g) {332}<113> twin boundaries (red lines) and grain boundaries (black lines) map(h) kernel average misorientation (KAM) map
图14  Ti-10Mo-1Fe/3Fe层状合金ST、STD、STDA和STDA-5%试样的原位LSCM像
1 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
2 Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aerosp. Sci., 2018, 97: 22
3 Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications [J]. JOM, 2015, 67: 1281
4 Xiang L, Min X H, Mi G B. Application and research progress of body-centered-cubic Ti-Mo base alloys [J]. J. Mater. Eng., 2017, 45(7): 128
4 向 力, 闵小华, 弥光宝. 体心立方Ti-Mo基钛合金应用研究进展 [J]. 材料工程, 2017, 45(7): 128
5 Castany P, Gloriant T, Sun F, et al. Design of strain-transformable titanium alloys [J]. C.R. Phys., 2018, 19: 710
6 Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—An overview [J]. Mater. Sci. Eng., 1998, A243: 46
7 Yao K, Min X H, Emura S, et al. Enhancement of impact toughness of β-type Ti-Mo alloy by {332}<113> twinning [J]. J. Mater. Sci., 2019, 54: 11279
8 Kolli R P, Devaraj A. A review of metastable beta titanium alloys [J]. Metals, 2018, 8: 506
9 Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
10 Ahmed M, Wexler D, Casillas G, et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
11 Shin S, Zhu C Y, Vecchio K S. Effect of twinned-structure on deformation behavior and correlated mechanical properties in a metastable β-Ti alloy [J]. J. Alloys Compd., 2019, 811: 152054
12 Wang X Y, Liu J R, Lei J F, et al. Effects of primary and secondary α phase on tensile property and fracture toughness of Ti-1023 alloy [J]. Acta Metall. Sin., 2007, 43: 1129
12 王晓燕, 刘建荣, 雷家峰等. 初生及次生α相对Ti-1023合金拉伸性能和断裂韧性的影响 [J]. 金属学报, 2007, 43: 1129
13 Dong R F, Li J S, Kou H C, et al. Dependence of mechanical properties on the microstructure characteristics of a near β titanium alloy Ti-7333 [J]. J. Mater. Sci. Technol., 2019, 35: 48
14 Sun F, Zhang J Y, Vermaut P, et al. Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging [J]. Mater. Res. Lett., 2017, 5: 547
15 Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater. Sci. Eng., 1998, A243: 244
16 Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters [J]. Scr. Mater., 2006, 55: 477
17 Zhao G H, Xu X, Dye D, et al. Microstructural evolution and strain-hardening in TWIP Ti alloys [J]. Acta Mater., 2020, 183: 155
18 Sadeghpour S, Abbasi S M, Morakabati M, et al. A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects [J]. Scr. Mater., 2018, 145: 104
19 Ren L, Xiao W L, Kent D, et al. Simultaneously enhanced strength and ductility in a metastable β-Ti alloy by stress-induced hierarchical twin structure [J]. Scr. Mater., 2020, 184: 6
20 Zhang J Y, Sun F, Chen Z, et al. Strong and ductile beta Ti-18Zr-13Mo alloy with multimodal twinning [J]. Mater. Res. Lett., 2019, 7: 251
21 Ren L, Xiao W L, Ma C L, et al. Development of a high strength and high ductility near β-Ti alloy with twinning induced plasticity effect [J]. Scr. Mater., 2018, 156: 47
22 Gao J H, Huang Y H, Guan D K, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate [J]. Acta Mater., 2018, 152: 301
23 Min X H, Tsuzaki K, Emura S, et al. Enhancement of uniform elongation in high strength Ti-Mo based alloys by combination of deformation modes [J]. Mater. Sci. Eng., 2011, A528: 4569
24 Zhang J Y, Fu Y Y, Wu Y J, et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization [J]. Mater. Res. Lett., 2020, 8: 247
25 Wang W L, Zhang X B, Sun J. Phase stability and tensile behavior of metastable β Ti-V-Fe and Ti-V-Fe-Al alloys [J]. Mater. Charact., 2018, 142: 398
26 Min X H, Emura S, Nishimura T, et al. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys [J]. Mater. Sci. Eng., 2010, A527: 5499
27 Min X H, Tsuzaki K, Emura S, et al. Heterogeneous twin formation and its effect on tensile properties in Ti-Mo based β titanium alloys [J]. Mater. Sci. Eng., 2012, A554: 53
28 Min X H, Emura S, Meng F Q, et al. Mechanical twinning and dislocation slip multilayered deformation microstructures in β-type Ti-Mo base alloy [J]. Scr. Mater., 2015, 102: 79
29 Min X H, Emura S, Zhang L, et al. Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase [J]. Mater. Sci. Eng., 2015, A646: 279
30 Xiang L, Min X H, Ji X, et al. Effect of pre-cold rolling-induced twins and subsequent precipitated ω-phase on mechanical properties in a β-type Ti-Mo alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 604
31 Hickman B S. The formation of omega phase in titanium and zirconium alloys: A review [J]. J. Mater. Sci., 1969, 4: 554
32 Jawed S F, Rabadia C D, Liu Y J, et al. Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys [J]. J. Alloys Compd., 2019, 792: 684
33 Gutierrez-Urrutia I, Li C L, Emura S, et al. Study of {332}<113> twinning in a multilayered Ti-10Mo-xFe (x=1-3) alloy by ECCI and EBSD [J]. Sci. Technol. Adv. Mat., 2016, 17: 220
34 Min X H, Bai P F, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy [J]. Mater. Sci. Eng., 2017, A684: 534
35 Sun F, Zhang J Y, Marteleur M, et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility [J]. Scr. Mater., 2015, 94: 17
36 Zhang J Y, Li J S, Chen G F, et al. Fabrication and characterization of a novel β metastable Ti-Mo-Zr alloy with large ductility and improved yield strength [J]. Mater. Charact., 2018, 139: 421
37 Wang X L, Li L, Xing H, et al. Role of oxygen in stress-induced ω phase transformation and {332}<113> mechanical twinning in βTi-20V alloy [J]. Scr. Mater., 2015, 96: 37
38 Brozek C, Sun F, Vermaut P, et al. A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties [J]. Scr. Mater., 2016, 114: 60
39 Liu H H, Niinomi M, Nakai M, et al. Changeable Young's modulus with large elongation-to-failure in β-type titanium alloys for spinal fixation applications [J]. Scr. Mater., 2014, 82: 29
40 Gordin D M, Sun F, Laillé D, et al. How a new strain transformable titanium-based biomedical alloy can be designed for balloon expendable stents [J]. Materialia, 2020, 10: 100638
41 Min X H, Tsuzaki K, Emura S, et al. Optimization of strength, ductility and corrosion Resistance in Ti-Mo base alloys by controlling Mo equivalency and bond order [J]. Mater. Trans., 2011, 52: 1611
42 Min X H, Emura S, Tsuchiya K, et al. Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition [J]. Mater. Sci. Eng., 2014, A590: 88
43 Yao K, Min X H, Emura S, et al. Coupling effect of deformation mode and temperature on tensile properties in TWIP type Ti-Mo alloy [J]. Mater. Sci. Eng., 2019, 766: 138363
44 Bertrand E, Castany P, Péron I, et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis [J]. Scr. Mater., 2011, 64: 1110
45 Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17: 316
46 Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, A527: 2738
47 Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater., 2012, 60: 596
48 Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
49 Min X H, Xiang L, Li M J, et al. Effect of {332}<113> twins combined with isothermal ω-phase on mechanical properties in Ti-15Mo alloy with different oxygen contents [J]. Acta Metall. Sin., 2018, 54: 1262
49 闵小华, 向 力, 李明佳等. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响 [J]. 金属学报, 2018, 54: 1262
50 Hanada S, Izumi O. Deformation and fracture of metastable beta titanium alloys (Ti-15Mo-5Zr and Ti-15Mo-5Zr-3Al) [J]. Trans. Jpn. Inst. Met., 1982, 23: 85
51 Banerjee S, Naik U M. Plastic instability in an omega forming Ti-15% Mo alloy [J]. Acta Mater., 1996, 44: 3667
52 Dini G, Ueji R, Najafizadeh A, et al. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density [J]. Mater. Sci. Eng., 2010, A527: 2759
53 Idrissi H, Renard K, Schryvers D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels [J]. Scr. Mater., 2010, 63: 961
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.