|
|
预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能 |
戴进财, 闵小华( ), 周克松, 姚凯, 王伟强 |
大连理工大学 材料科学与工程学院 大连 116024 |
|
Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy |
DAI Jincai, MIN Xiaohua( ), ZHOU Kesong, YAO Kai, WANG Weiqiang |
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
Jincai DAI,
Xiaohua MIN,
Kesong ZHOU,
Kai YAO,
Weiqiang WANG.
Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. Acta Metall Sin, 2021, 57(6): 767-779.
1 |
Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
|
2 |
Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aerosp. Sci., 2018, 97: 22
|
3 |
Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications [J]. JOM, 2015, 67: 1281
|
4 |
Xiang L, Min X H, Mi G B. Application and research progress of body-centered-cubic Ti-Mo base alloys [J]. J. Mater. Eng., 2017, 45(7): 128
|
4 |
向 力, 闵小华, 弥光宝. 体心立方Ti-Mo基钛合金应用研究进展 [J]. 材料工程, 2017, 45(7): 128
|
5 |
Castany P, Gloriant T, Sun F, et al. Design of strain-transformable titanium alloys [J]. C.R. Phys., 2018, 19: 710
|
6 |
Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—An overview [J]. Mater. Sci. Eng., 1998, A243: 46
|
7 |
Yao K, Min X H, Emura S, et al. Enhancement of impact toughness of β-type Ti-Mo alloy by {332}<113> twinning [J]. J. Mater. Sci., 2019, 54: 11279
|
8 |
Kolli R P, Devaraj A. A review of metastable beta titanium alloys [J]. Metals, 2018, 8: 506
|
9 |
Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
|
10 |
Ahmed M, Wexler D, Casillas G, et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
|
11 |
Shin S, Zhu C Y, Vecchio K S. Effect of twinned-structure on deformation behavior and correlated mechanical properties in a metastable β-Ti alloy [J]. J. Alloys Compd., 2019, 811: 152054
|
12 |
Wang X Y, Liu J R, Lei J F, et al. Effects of primary and secondary α phase on tensile property and fracture toughness of Ti-1023 alloy [J]. Acta Metall. Sin., 2007, 43: 1129
|
12 |
王晓燕, 刘建荣, 雷家峰等. 初生及次生α相对Ti-1023合金拉伸性能和断裂韧性的影响 [J]. 金属学报, 2007, 43: 1129
|
13 |
Dong R F, Li J S, Kou H C, et al. Dependence of mechanical properties on the microstructure characteristics of a near β titanium alloy Ti-7333 [J]. J. Mater. Sci. Technol., 2019, 35: 48
|
14 |
Sun F, Zhang J Y, Vermaut P, et al. Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging [J]. Mater. Res. Lett., 2017, 5: 547
|
15 |
Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater. Sci. Eng., 1998, A243: 244
|
16 |
Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters [J]. Scr. Mater., 2006, 55: 477
|
17 |
Zhao G H, Xu X, Dye D, et al. Microstructural evolution and strain-hardening in TWIP Ti alloys [J]. Acta Mater., 2020, 183: 155
|
18 |
Sadeghpour S, Abbasi S M, Morakabati M, et al. A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects [J]. Scr. Mater., 2018, 145: 104
|
19 |
Ren L, Xiao W L, Kent D, et al. Simultaneously enhanced strength and ductility in a metastable β-Ti alloy by stress-induced hierarchical twin structure [J]. Scr. Mater., 2020, 184: 6
|
20 |
Zhang J Y, Sun F, Chen Z, et al. Strong and ductile beta Ti-18Zr-13Mo alloy with multimodal twinning [J]. Mater. Res. Lett., 2019, 7: 251
|
21 |
Ren L, Xiao W L, Ma C L, et al. Development of a high strength and high ductility near β-Ti alloy with twinning induced plasticity effect [J]. Scr. Mater., 2018, 156: 47
|
22 |
Gao J H, Huang Y H, Guan D K, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate [J]. Acta Mater., 2018, 152: 301
|
23 |
Min X H, Tsuzaki K, Emura S, et al. Enhancement of uniform elongation in high strength Ti-Mo based alloys by combination of deformation modes [J]. Mater. Sci. Eng., 2011, A528: 4569
|
24 |
Zhang J Y, Fu Y Y, Wu Y J, et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization [J]. Mater. Res. Lett., 2020, 8: 247
|
25 |
Wang W L, Zhang X B, Sun J. Phase stability and tensile behavior of metastable β Ti-V-Fe and Ti-V-Fe-Al alloys [J]. Mater. Charact., 2018, 142: 398
|
26 |
Min X H, Emura S, Nishimura T, et al. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys [J]. Mater. Sci. Eng., 2010, A527: 5499
|
27 |
Min X H, Tsuzaki K, Emura S, et al. Heterogeneous twin formation and its effect on tensile properties in Ti-Mo based β titanium alloys [J]. Mater. Sci. Eng., 2012, A554: 53
|
28 |
Min X H, Emura S, Meng F Q, et al. Mechanical twinning and dislocation slip multilayered deformation microstructures in β-type Ti-Mo base alloy [J]. Scr. Mater., 2015, 102: 79
|
29 |
Min X H, Emura S, Zhang L, et al. Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase [J]. Mater. Sci. Eng., 2015, A646: 279
|
30 |
Xiang L, Min X H, Ji X, et al. Effect of pre-cold rolling-induced twins and subsequent precipitated ω-phase on mechanical properties in a β-type Ti-Mo alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 604
|
31 |
Hickman B S. The formation of omega phase in titanium and zirconium alloys: A review [J]. J. Mater. Sci., 1969, 4: 554
|
32 |
Jawed S F, Rabadia C D, Liu Y J, et al. Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys [J]. J. Alloys Compd., 2019, 792: 684
|
33 |
Gutierrez-Urrutia I, Li C L, Emura S, et al. Study of {332}<113> twinning in a multilayered Ti-10Mo-xFe (x=1-3) alloy by ECCI and EBSD [J]. Sci. Technol. Adv. Mat., 2016, 17: 220
|
34 |
Min X H, Bai P F, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy [J]. Mater. Sci. Eng., 2017, A684: 534
|
35 |
Sun F, Zhang J Y, Marteleur M, et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility [J]. Scr. Mater., 2015, 94: 17
|
36 |
Zhang J Y, Li J S, Chen G F, et al. Fabrication and characterization of a novel β metastable Ti-Mo-Zr alloy with large ductility and improved yield strength [J]. Mater. Charact., 2018, 139: 421
|
37 |
Wang X L, Li L, Xing H, et al. Role of oxygen in stress-induced ω phase transformation and {332}<113> mechanical twinning in βTi-20V alloy [J]. Scr. Mater., 2015, 96: 37
|
38 |
Brozek C, Sun F, Vermaut P, et al. A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties [J]. Scr. Mater., 2016, 114: 60
|
39 |
Liu H H, Niinomi M, Nakai M, et al. Changeable Young's modulus with large elongation-to-failure in β-type titanium alloys for spinal fixation applications [J]. Scr. Mater., 2014, 82: 29
|
40 |
Gordin D M, Sun F, Laillé D, et al. How a new strain transformable titanium-based biomedical alloy can be designed for balloon expendable stents [J]. Materialia, 2020, 10: 100638
|
41 |
Min X H, Tsuzaki K, Emura S, et al. Optimization of strength, ductility and corrosion Resistance in Ti-Mo base alloys by controlling Mo equivalency and bond order [J]. Mater. Trans., 2011, 52: 1611
|
42 |
Min X H, Emura S, Tsuchiya K, et al. Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition [J]. Mater. Sci. Eng., 2014, A590: 88
|
43 |
Yao K, Min X H, Emura S, et al. Coupling effect of deformation mode and temperature on tensile properties in TWIP type Ti-Mo alloy [J]. Mater. Sci. Eng., 2019, 766: 138363
|
44 |
Bertrand E, Castany P, Péron I, et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis [J]. Scr. Mater., 2011, 64: 1110
|
45 |
Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17: 316
|
46 |
Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, A527: 2738
|
47 |
Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater., 2012, 60: 596
|
48 |
Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
|
49 |
Min X H, Xiang L, Li M J, et al. Effect of {332}<113> twins combined with isothermal ω-phase on mechanical properties in Ti-15Mo alloy with different oxygen contents [J]. Acta Metall. Sin., 2018, 54: 1262
|
49 |
闵小华, 向 力, 李明佳等. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响 [J]. 金属学报, 2018, 54: 1262
|
50 |
Hanada S, Izumi O. Deformation and fracture of metastable beta titanium alloys (Ti-15Mo-5Zr and Ti-15Mo-5Zr-3Al) [J]. Trans. Jpn. Inst. Met., 1982, 23: 85
|
51 |
Banerjee S, Naik U M. Plastic instability in an omega forming Ti-15% Mo alloy [J]. Acta Mater., 1996, 44: 3667
|
52 |
Dini G, Ueji R, Najafizadeh A, et al. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density [J]. Mater. Sci. Eng., 2010, A527: 2759
|
53 |
Idrissi H, Renard K, Schryvers D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels [J]. Scr. Mater., 2010, 63: 961
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|