|
|
耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展 |
吴欣强, 戎利建( ), 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜 |
中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels |
WU Xinqiang, RONG Lijian( ), TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu |
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
Xinqiang WU,
Lijian RONG,
Jibo TAN,
Shenghu CHEN,
Xiaofeng HU,
Yangpeng ZHANG,
Ziyu ZHANG.
Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. Acta Metall Sin, 2023, 59(4): 502-512.
1 |
Was G S. Challenges to the use of ion irradiation for emulating reactor irradiation [J]. J. Mater. Res., 2015, 30: 1158
doi: 10.1557/jmr.2015.73
|
2 |
OECD, Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [R]. OECD/NEA No. 6195, 2015
|
3 |
Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
doi: 10.1016/j.pmatsci.2022.100920
|
4 |
Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550oC: Effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
doi: 10.1016/j.corsci.2022.110405
|
5 |
Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
doi: 10.1016/j.corsci.2008.02.006
|
6 |
Martinelli L, Dufrenoy T, Jaakou K, et al. High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy [J]. J. Nucl. Mater., 2008, 376: 282
doi: 10.1016/j.jnucmat.2008.02.006
|
7 |
Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600oC [J]. Corros. Sci., 2006, 48: 577
doi: 10.1016/j.corsci.2005.04.001
|
8 |
Klok O, Lambrinou K, Gavrilov S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500oC [J]. J. Nucl. Mater., 2018, 510: 556
doi: 10.1016/j.jnucmat.2018.08.030
|
9 |
Kurata Y, Futakawa M, Saito S. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550oC [J]. J. Nucl. Mater., 2005, 343: 333
doi: 10.1016/j.jnucmat.2004.07.064
|
10 |
Tsisar V, Schroer C, Wedemeyer O, et al. Effect of structural state and surface finishing on corrosion behavior of 1.4970 austenitic steel at 400 and 500oC in flowing Pb-Bi eutectic with dissolved oxygen [J]. J. Nucl. Eng. Rad. Sci., 2018, 4: 041001
|
11 |
Schroer C, Wedemeyer O, Skrypnik A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450oC [J]. J. Nucl. Mater., 2012, 431: 105
doi: 10.1016/j.jnucmat.2011.11.014
|
12 |
Tian S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead-bismuth eutectic at 480oC [J]. Oxid. Met., 2020, 93: 183
doi: 10.1007/s11085-019-09953-7
|
13 |
Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement [J]. Corrosion, 2019, 75: 42
doi: 10.5006/2904
|
14 |
Gong X, Stergar E, Marmy P, et al. Tensile fracture behavior of notched 9Cr-1Mo ferritic-martensitic steel specimens in contact with liquid lead-bismuth eutectic at 350oC [J]. Mater. Sci. Eng., 2017, A692: 139
|
15 |
Wang H, Gong X, Xiao J, et al. Liquid metal embrittlement of 12Cr ferritic/martensitic steel thin-walled tubes exposed to liquid lead-bismuth eutectic [J]. Corros. Sci., 2022, 195: 110024
doi: 10.1016/j.corsci.2021.110024
|
16 |
Xue B Q, Tan J B, Zhang Z Y, et al. Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550oC [J]. Int. J. Fatigue, 2023, 167: 107344
doi: 10.1016/j.ijfatigue.2022.107344
|
17 |
Gong X, Marmy P, Verlinden B, et al. Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350oC—Effects of oxygen concentration in the liquid metal and strain rate [J]. Corros. Sci., 2015, 94: 377
doi: 10.1016/j.corsci.2015.02.022
|
18 |
Vogt J B, Bouquerel J, Carle C, et al. Stability of fatigue cracks at 350 oC in air and in liquid metal in T91 martensitic steel [J]. Int. J. Fatigue, 2020, 130: 105265
doi: 10.1016/j.ijfatigue.2019.105265
|
19 |
Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450oC [J]. J. Nucl. Mater., 2016, 468: 289
doi: 10.1016/j.jnucmat.2015.06.021
|
20 |
Van Den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
|
21 |
Auger T, Gorse D, Hamouche-Hadjem Z, et al. Fracture mechanics behavior of the T91 martensitic steel in contact with liquid lead-bismuth eutectic for application in an accelerator driven system [J]. J. Nucl. Mater., 2011, 415: 293
doi: 10.1016/j.jnucmat.2011.04.021
|
22 |
Weisenburger A, Jianu A, An W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550oC [J]. J. Nucl. Mater., 2012, 431: 77
doi: 10.1016/j.jnucmat.2011.11.027
|
23 |
Yurechko M, Schroer C, Skrypnik A, et al Creep-to-rupture of the steel P 92 at 650oC in oxygen-controlled stagnant lead in comparison to air [J]. J. Nucl. Mater., 2013, 432: 78
doi: 10.1016/j.jnucmat.2012.07.029
|
24 |
Yurechko M, Schroer C, Skrypnik A, et al. Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650oC [J]. J. Nucl. Mater., 2014, 450: 88
doi: 10.1016/j.jnucmat.2013.09.063
|
25 |
Yurechko M, Schroer C, Wedemeyer O, et al. Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 oC[J]. Nucl. Eng. Des., 2014, 280: 686
doi: 10.1016/j.nucengdes.2014.06.003
|
26 |
Schroer C, Koch V, Wedemeyer O, et al. Silicon-containing ferritic/martensitic steel after exposure to oxygen-containing flowing lead-bismuth eutectic at 450 and 550oC [J]. J. Nucl. Mater., 2016, 469: 162
doi: 10.1016/j.jnucmat.2015.11.058
|
27 |
Shi H, Jianu A, Fetzer R, et al. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead [J]. Corros. Sci., 2021, 189: 109593
doi: 10.1016/j.corsci.2021.109593
|
28 |
Li N, Parker S S, Saleh T A, et al. Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC [J]. Corros. Sci., 2019, 157: 274
doi: 10.1016/j.corsci.2019.05.029
|
29 |
Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
doi: 10.1016/j.actamat.2018.03.041
|
30 |
Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead-bismuth [J]. J. Nucl. Mater., 2013, 437: 401
doi: 10.1016/j.jnucmat.2013.02.022
|
31 |
Short M P, Ballinger R G, Hänninen H E. Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715oC [J]. J. Nucl. Mater., 2013, 434: 259
doi: 10.1016/j.jnucmat.2012.11.010
|
32 |
Chen L Z, Tsisar V, Wang M, et al. Effect of oxygen on corrosion of an alumina-forming duplex steel in static liquid lead-bismuth eutectic at 550oC [J]. Corros. Sci., 2021, 189: 109591
doi: 10.1016/j.corsci.2021.109591
|
33 |
Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
doi: 10.1016/j.corsci.2016.04.020
|
34 |
Shi H, Wang H, Fetzer R, et al. Influence of Si addition on the corrosion behavior of 9 wt% Cr ferritic/ martensitic steels exposed to oxygen-controlled molten Pb-Bi eutectic at 550 and 600oC [J]. Corros. Sci., 2021, 193: 109871
doi: 10.1016/j.corsci.2021.109871
|
35 |
Ejenstam J, Szakálos P. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead [J]. J. Nucl. Mater., 2015, 461: 164
doi: 10.1016/j.jnucmat.2015.03.011
|
36 |
Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
|
37 |
Van Den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels [J]. J. Nucl. Mater., 2012, 429: 105
doi: 10.1016/j.jnucmat.2012.05.017
|
38 |
Gong X, Sun L, Zhang F F, et al. Effect of alloying elements on liquid metal embrittlement of pure BCC Fe in contact with liquid lead-bismuth eutectic: Experiments and first principles calculation [J]. Corros. Sci., 2022, 208: 110522
doi: 10.1016/j.corsci.2022.110522
|
39 |
Tan J B, Zhang Q, Wang X, et al. Slow tension and creep test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 202120775739.5, 2021
|
39 |
谭季波, 张 强, 王 翔 等. 高温液态铅铋环境中的慢拉伸及蠕变试验装置 [P]. 中国专利, 202120775739.5, 2021)
|
40 |
Tan J B, Zhang Q, Wang X, et al. A fatigue test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 2021207-75649.6, 2021
|
40 |
谭季波, 张 强, 王 翔 等. 一种高温液态铅铋环境中的疲劳试验装置 [P]. 中国专利, 202120775649.6, 2021)
|
41 |
Pan X, Zhang Y P, Dong Z H, et al. Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel [J]. Acta Metall. Sin., doi: 10.11900/0412.1961.2022.00267
|
41 |
潘 霞, 张洋鹏, 董志宏 等. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, doi: 10.11900/0412.1961.2022.00267
|
42 |
Roy A, Kumar P, Maitra D. The effect of silicon content on impact toughness of t91 grade steels [J]. J. Mater. Eng. Perform., 2009, 18: 205
doi: 10.1007/s11665-008-9271-z
|
43 |
Cabet C, Dalle F, Gaganidze E, et al. Ferritic-martensitic steels for fission and fusion applications [J]. J. Nucl. Mater., 2019, 523: 510
doi: 10.1016/j.jnucmat.2019.05.058
|
44 |
Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
doi: 10.3390/cryst13020268
|
45 |
Wang Q Y, Chen S H, Rong L J. δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
|
46 |
Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
doi: 10.1016/j.jmst.2021.10.008
|
47 |
Padilha A F, Rios P R. Decomposition of austenite in austenitic stainless steels [J]. ISIJ Int., 2002, 42: 325
doi: 10.2355/isijinternational.42.325
|
48 |
Etienne A, Radiguet B, Pareige P. Understanding silicon-rich phase precipitation under irradiation in austenitic stainless steels [J]. J. Nucl. Mater., 2010, 406: 251
doi: 10.1016/j.jnucmat.2010.08.045
|
49 |
Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
doi: 10.1016/j.matchar.2022.112384
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|