Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 502-512    DOI: 10.11900/0412.1961.2022.00531
  综述 本期目录 | 过刊浏览 |
Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展
吴欣强, 戎利建(), 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜
中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels
WU Xinqiang, RONG Lijian(), TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
Xinqiang WU, Lijian RONG, Jibo TAN, Shenghu CHEN, Xiaofeng HU, Yangpeng ZHANG, Ziyu ZHANG. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. Acta Metall Sin, 2023, 59(4): 502-512.

全文: PDF(4501 KB)   HTML
摘要: 

结构材料是制约铅冷快堆建设的关键因素之一,原因是其组成元素在液态Pb-Bi共晶(LBE)中会发生不同程度的溶解,影响结构安全。候选结构材料铁素体/马氏体钢T91与不锈钢316在550℃饱和氧LBE环境中发生快速氧化腐蚀;溶解氧浓度降至1.26 × 10-6% (质量分数)可减轻T91的液态LBE腐蚀,但低于1 × 10-6%时,T91与316钢发生溶解腐蚀;T91液态LBE脆化敏感性高,导致其在350℃液态LBE中腐蚀疲劳寿命显著降低。与商用的(9%~12%)Cr铁素体/马氏体钢和316型奥氏体不锈钢相比,经微合金化的Si增强型铁素体/马氏体钢(9Cr-Si和12Cr-Si)和奥氏体不锈钢(ASS-Si),具有较好的组织稳定性和综合力学性能,且在液态LBE中形成的富Si氧化物提高了氧化膜的致密性,改善了其耐腐蚀性能,在550℃下静态饱和氧和动态控氧LBE环境中的溶解腐蚀受到抑制,有望满足铅冷快堆的设计需求。

关键词 铁素体/马氏体钢奥氏体不锈钢液态金属腐蚀液态金属脆化力学性能组织稳定性    
Abstract

Structural materials are one of the major factors that restrict the lead-cooled fast reactor construction due to metallic elements that can dissolve in the liquid lead-bismuth eutectic (LBE), which may affect the structure's safety. T91 steel and 316 stainless steel are the leading structural materials for critical equipment such as fuel cladding, reactor vessels, and reactor core internals. The environmental compatibility of those steels with the liquid LBE needs to be systematically evaluated. However, T91 steel and 316 stainless steel suffer from rapid oxidation corrosion in oxygen-saturated LBE at 550oC. T91 steel's corrosion resistance in liquid LBE can be improved by decreasing the oxygen concentration (1.26 × 10-6%, mass fraction), but dissolved corrosion occurred at dissolved oxygen concentration below 1 × 10-6% for T91 steel and 316 stainless steel. T91 steel is sensitive to liquid metal embrittlement, significantly reducing its corrosion fatigue life in the liquid LBE. Compared to the standard (9%-12%)Cr ferritic/martensitic steel and 316 stainless steel, the microalloyed Si enhanced (9%-12%)Cr ferritic/martensitic steel (9Cr-Si and 12Cr-Si) and 316 stainless steel (ASS-Si) have good microstructural stability and comprehensive mechanical properties. The Si-rich oxide formation in liquid LBE improves the oxide film compactness and corrosion resistance. The dissolution corrosion was inhibited in static oxygen-saturation and oxygen-controlled (10-6%-10-7%) flowing liquid LBE (0.3 m/s) at 550oC for 9Cr-Si, 12Cr-Si, and ASS-Si. These alloys are expected to meet the design requirements for a lead-cooled fast reactor.

Key wordsferritic/martensitic steel    austenitic stainless steel    liquid metal corrosion    liquid metal embrittlement    mechanical property    microstructure stability
收稿日期: 2022-10-20     
ZTFLH:  TL341  
基金资助:国家自然科学基金项目(52271077);国家自然科学基金项目(51871218);中核集团领创科研项目及中国科学院青年创新促进会项目(2021189)
通讯作者: 戎利建,ljrong@imr.ac.cn,主要从事核用材料研究
Corresponding author: RONG Lijian, professor, Tel: (024)23971979, E-mail: ljrong@imr.ac.cn
作者简介: 吴欣强,男,1971年生,研究员,博士
图1  液态Pb-Bi共晶(LBE)腐蚀损伤测试装置实物图
图2  铁素体/马氏体钢T91在550℃液态LBE中浸泡1000 h后的截面形貌[4]
图3  不锈钢316在550℃液态LBE中浸泡1000 h后的截面形貌
图4  T91和316钢在高温空气与液态LBE环境中疲劳寿命对比
图5  T91和316钢在液态LBE环境中疲劳裂纹扩展区特征
图6  9Cr-Si在550℃静态饱和氧LBE环境下腐蚀1000 h后的氧化层形貌及元素分布
图7  12Cr-Si系铁素体/马氏体钢LBE腐蚀实验结果
图8  9Cr-Si铁素体/马氏体钢的铸态组织和均质化处理后的组织
图9  回火态9Cr-Si铁素体/马氏体钢的SEM像
图10  9Cr-Si铁素体/马氏体钢和T91的室温、高温强度曲线及韧脆转变温度(DBTT)曲线
图11  9Cr-Si铁素体/马氏体钢550℃时效后DBTT曲线及时效3000 h后的TEM像与元素分布图
图12  650℃下12Cr-Si和HT9持久性能的对比
图13  ASS-Si和316钢经550℃饱和氧LBE腐蚀5000 h后氧化层厚度随时间的变化曲线
图14  ASS-Si经550℃饱和氧LBE腐蚀1000 h后氧化膜的截面形貌和元素分布
图15  ASS-Si和316钢经550℃流动控氧LBE腐蚀1500 h后的截面形貌
图16  含Si奥氏体钢经550℃时效处理1000 h后晶界附近的微观组织及元素分布
SteelYield strengthTensile strength3000 h creep-rupture strength

Type 304

ASS-Si

106

201

349

433

210

220

表1  ASS-Si奥氏体钢和Type 304奥氏体钢在550℃下的拉伸强度和持久强度 (MPa)
1 Was G S. Challenges to the use of ion irradiation for emulating reactor irradiation [J]. J. Mater. Res., 2015, 30: 1158
doi: 10.1557/jmr.2015.73
2 OECD, Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [R]. OECD/NEA No. 6195, 2015
3 Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
doi: 10.1016/j.pmatsci.2022.100920
4 Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550oC: Effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
doi: 10.1016/j.corsci.2022.110405
5 Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
doi: 10.1016/j.corsci.2008.02.006
6 Martinelli L, Dufrenoy T, Jaakou K, et al. High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy [J]. J. Nucl. Mater., 2008, 376: 282
doi: 10.1016/j.jnucmat.2008.02.006
7 Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600oC [J]. Corros. Sci., 2006, 48: 577
doi: 10.1016/j.corsci.2005.04.001
8 Klok O, Lambrinou K, Gavrilov S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500oC [J]. J. Nucl. Mater., 2018, 510: 556
doi: 10.1016/j.jnucmat.2018.08.030
9 Kurata Y, Futakawa M, Saito S. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550oC [J]. J. Nucl. Mater., 2005, 343: 333
doi: 10.1016/j.jnucmat.2004.07.064
10 Tsisar V, Schroer C, Wedemeyer O, et al. Effect of structural state and surface finishing on corrosion behavior of 1.4970 austenitic steel at 400 and 500oC in flowing Pb-Bi eutectic with dissolved oxygen [J]. J. Nucl. Eng. Rad. Sci., 2018, 4: 041001
11 Schroer C, Wedemeyer O, Skrypnik A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450oC [J]. J. Nucl. Mater., 2012, 431: 105
doi: 10.1016/j.jnucmat.2011.11.014
12 Tian S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead-bismuth eutectic at 480oC [J]. Oxid. Met., 2020, 93: 183
doi: 10.1007/s11085-019-09953-7
13 Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement [J]. Corrosion, 2019, 75: 42
doi: 10.5006/2904
14 Gong X, Stergar E, Marmy P, et al. Tensile fracture behavior of notched 9Cr-1Mo ferritic-martensitic steel specimens in contact with liquid lead-bismuth eutectic at 350oC [J]. Mater. Sci. Eng., 2017, A692: 139
15 Wang H, Gong X, Xiao J, et al. Liquid metal embrittlement of 12Cr ferritic/martensitic steel thin-walled tubes exposed to liquid lead-bismuth eutectic [J]. Corros. Sci., 2022, 195: 110024
doi: 10.1016/j.corsci.2021.110024
16 Xue B Q, Tan J B, Zhang Z Y, et al. Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550oC [J]. Int. J. Fatigue, 2023, 167: 107344
doi: 10.1016/j.ijfatigue.2022.107344
17 Gong X, Marmy P, Verlinden B, et al. Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350oC—Effects of oxygen concentration in the liquid metal and strain rate [J]. Corros. Sci., 2015, 94: 377
doi: 10.1016/j.corsci.2015.02.022
18 Vogt J B, Bouquerel J, Carle C, et al. Stability of fatigue cracks at 350 oC in air and in liquid metal in T91 martensitic steel [J]. Int. J. Fatigue, 2020, 130: 105265
doi: 10.1016/j.ijfatigue.2019.105265
19 Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450oC [J]. J. Nucl. Mater., 2016, 468: 289
doi: 10.1016/j.jnucmat.2015.06.021
20 Van Den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
21 Auger T, Gorse D, Hamouche-Hadjem Z, et al. Fracture mechanics behavior of the T91 martensitic steel in contact with liquid lead-bismuth eutectic for application in an accelerator driven system [J]. J. Nucl. Mater., 2011, 415: 293
doi: 10.1016/j.jnucmat.2011.04.021
22 Weisenburger A, Jianu A, An W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550oC [J]. J. Nucl. Mater., 2012, 431: 77
doi: 10.1016/j.jnucmat.2011.11.027
23 Yurechko M, Schroer C, Skrypnik A, et al Creep-to-rupture of the steel P 92 at 650oC in oxygen-controlled stagnant lead in comparison to air [J]. J. Nucl. Mater., 2013, 432: 78
doi: 10.1016/j.jnucmat.2012.07.029
24 Yurechko M, Schroer C, Skrypnik A, et al. Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650oC [J]. J. Nucl. Mater., 2014, 450: 88
doi: 10.1016/j.jnucmat.2013.09.063
25 Yurechko M, Schroer C, Wedemeyer O, et al. Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 oC[J]. Nucl. Eng. Des., 2014, 280: 686
doi: 10.1016/j.nucengdes.2014.06.003
26 Schroer C, Koch V, Wedemeyer O, et al. Silicon-containing ferritic/martensitic steel after exposure to oxygen-containing flowing lead-bismuth eutectic at 450 and 550oC [J]. J. Nucl. Mater., 2016, 469: 162
doi: 10.1016/j.jnucmat.2015.11.058
27 Shi H, Jianu A, Fetzer R, et al. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead [J]. Corros. Sci., 2021, 189: 109593
doi: 10.1016/j.corsci.2021.109593
28 Li N, Parker S S, Saleh T A, et al. Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC [J]. Corros. Sci., 2019, 157: 274
doi: 10.1016/j.corsci.2019.05.029
29 Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
doi: 10.1016/j.actamat.2018.03.041
30 Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead-bismuth [J]. J. Nucl. Mater., 2013, 437: 401
doi: 10.1016/j.jnucmat.2013.02.022
31 Short M P, Ballinger R G, Hänninen H E. Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715oC [J]. J. Nucl. Mater., 2013, 434: 259
doi: 10.1016/j.jnucmat.2012.11.010
32 Chen L Z, Tsisar V, Wang M, et al. Effect of oxygen on corrosion of an alumina-forming duplex steel in static liquid lead-bismuth eutectic at 550oC [J]. Corros. Sci., 2021, 189: 109591
doi: 10.1016/j.corsci.2021.109591
33 Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
doi: 10.1016/j.corsci.2016.04.020
34 Shi H, Wang H, Fetzer R, et al. Influence of Si addition on the corrosion behavior of 9 wt% Cr ferritic/ martensitic steels exposed to oxygen-controlled molten Pb-Bi eutectic at 550 and 600oC [J]. Corros. Sci., 2021, 193: 109871
doi: 10.1016/j.corsci.2021.109871
35 Ejenstam J, Szakálos P. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead [J]. J. Nucl. Mater., 2015, 461: 164
doi: 10.1016/j.jnucmat.2015.03.011
36 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
37 Van Den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels [J]. J. Nucl. Mater., 2012, 429: 105
doi: 10.1016/j.jnucmat.2012.05.017
38 Gong X, Sun L, Zhang F F, et al. Effect of alloying elements on liquid metal embrittlement of pure BCC Fe in contact with liquid lead-bismuth eutectic: Experiments and first principles calculation [J]. Corros. Sci., 2022, 208: 110522
doi: 10.1016/j.corsci.2022.110522
39 Tan J B, Zhang Q, Wang X, et al. Slow tension and creep test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 202120775739.5, 2021
39 谭季波, 张 强, 王 翔 等. 高温液态铅铋环境中的慢拉伸及蠕变试验装置 [P]. 中国专利, 202120775739.5, 2021)
40 Tan J B, Zhang Q, Wang X, et al. A fatigue test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 2021207-75649.6, 2021
40 谭季波, 张 强, 王 翔 等. 一种高温液态铅铋环境中的疲劳试验装置 [P]. 中国专利, 202120775649.6, 2021)
41 Pan X, Zhang Y P, Dong Z H, et al. Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel [J]. Acta Metall. Sin., doi: 10.11900/0412.1961.2022.00267
41 潘 霞, 张洋鹏, 董志宏 等. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, doi: 10.11900/0412.1961.2022.00267
42 Roy A, Kumar P, Maitra D. The effect of silicon content on impact toughness of t91 grade steels [J]. J. Mater. Eng. Perform., 2009, 18: 205
doi: 10.1007/s11665-008-9271-z
43 Cabet C, Dalle F, Gaganidze E, et al. Ferritic-martensitic steels for fission and fusion applications [J]. J. Nucl. Mater., 2019, 523: 510
doi: 10.1016/j.jnucmat.2019.05.058
44 Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
doi: 10.3390/cryst13020268
45 Wang Q Y, Chen S H, Rong L J. δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
46 Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
doi: 10.1016/j.jmst.2021.10.008
47 Padilha A F, Rios P R. Decomposition of austenite in austenitic stainless steels [J]. ISIJ Int., 2002, 42: 325
doi: 10.2355/isijinternational.42.325
48 Etienne A, Radiguet B, Pareige P. Understanding silicon-rich phase precipitation under irradiation in austenitic stainless steels [J]. J. Nucl. Mater., 2010, 406: 251
doi: 10.1016/j.jnucmat.2010.08.045
49 Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
doi: 10.1016/j.matchar.2022.112384
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[15] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.