Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1653-1666    DOI: 10.11900/0412.1961.2020.00534
  研究论文 本期目录 | 过刊浏览 |
加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响
李索, 陈维奇, 胡龙, 邓德安()
重庆大学 材料科学与工程学院 重庆 400045
Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint
LI Suo, CHEN Weiqi, HU Long, DENG Dean()
College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
引用本文:

李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
Suo LI, Weiqi CHEN, Long HU, Dean DENG. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. Acta Metall Sin, 2021, 57(12): 1653-1666.

全文: PDF(2944 KB)   HTML
摘要: 

采用数值模拟和实验相结合的方法研究了加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响。基于通用有限元软件Abaqus开发了新的动态退火模型,研究了应变硬化模型(各向同性硬化模型和Chaboche混合硬化模型)和退火模型(阶跃退火模型和动态退火模型)对Satoh数值实验中应力和累积塑性应变在多重热循环条件下的形成过程与机理的影响。同时,采用2D轴对称模型计算了管-管对接接头的温度场和焊接残余应力分布,并分别与焊接热循环实验数据和由切片法、固有应变法和深孔法测量得到的残余应力结果进行对比与验证。结果表明,退火软化效应对累积塑性应变和焊接残余应力的形成过程有显著影响,不考虑退火软化效应的残余应力模拟结果与实验值相比明显偏高。新开发的动态退火模型的计算结果与实验数据吻合良好,具有较高的计算精度。当考虑退火软化效应时,采用各向同性硬化模型可以获得较精确且偏保守的计算结果,而采用Chaboche混合硬化模型的焊接残余应力计算精度更高。对于316不锈钢而言,当采用阶跃退火模型时,建议将退火温度设定为900~1000℃。

关键词 奥氏体不锈钢退火软化效应加工硬化焊接残余应力有限元模拟    
Abstract

Stress corrosion cracking (SCC) is a major problem in the welded components of austenitic stainless steel in nuclear power plants. High tensile residual stress is an important factor resulting in the SCC of materials. Austenitic stainless steel has a strong tendency for work hardening owing to its fcc crystal structure and low stacking-fault energy. High plastic strain can accumulate during a multipass welding process. On the other hand, accumulated strain hardening can be reduced or even eliminated during the welding thermal cycles owing to dynamic recovery, recrystallization, and grain growth below the melting point, which is called the annealing effect. Influence of strain hardening and annealing effect needs to be investigated to predict the welding-induced residual stresses accurately in austenitic stainless steel joints. In this study, a new time-temperature-dependent annealing model was proposed based on the Johnson-Mehl-Avrami equation. Numerical Satoh tests were performed to clarify the influence of strain-hardening models (i.e., the isotropic strain-hardening model and Chaboche mixed isotropic-kinematic strain-hardening model) and annealing models (i.e., the single-stage annealing model and new time-temperature-dependent annealing model) on the formation of residual stresses and the accumulated plastic strain during multiple thermal cycles. Thermoelastic-plastic finite element (FE) analyses were carried out to predict the welding residual stresses and accumulated plastic strain in a thick-wall 316 stainless steel butt-welded pipe joint with 85 welding passes. The residual stresses of the welded joint were measured by the sectioning method, inherent strain method, and deep-hole drilling method. The simulations of welding residual stresses were compared with the measurements. Annealing effect significantly influences the formation of accumulated plastic strain and welding residual stresses, neglecting which will result in a significant overestimation of FE results. The proposed annealing model showed an excellent match to the experimental data. With the consideration of the annealing effect, the isotropic strain-hardening model overestimated the welding residual stresses slightly, while the FE results of welding residual stresses using the Chaboche mixed strain-hardening model showed better agreement with the measurements. The single-stage annealing model revealed a recommended annealing temperature of 900-1000°C for austenitic stainless steel such as 316 stainless steel.

Key wordsaustenitic stainless steel    annealing effect    strain hardening    welding residual stress    finite element analysis
收稿日期: 2020-12-30     
ZTFLH:  TG404  
基金资助:中央高校基本科研业务费项目(2018CDYJSY0055);国家自然科学基金项目(51875063)
作者简介: 李 索,男,1993年生,博士生
图1  坡口尺寸和焊道布置示意图
图2  焊接始终端和焊接方向示意图
图3  焊接残余应力测量位置示意图
图4  各向同性硬化模型和Chaboche混合硬化模型的屈服面示意图
T / oCIsotropic hardening modelChaboche mixed isotropic-kinematic hardening model
σ0 / MPaK / MPamQinf / MPaβC1 / MPaC2 / MPaγ1γ2
20125.6519.20.24153.46.915643561341410.8547.19
27597.6475.50.28154.76.910063155681410.8547.19
55090.9444.90.32150.66.96434162271410.8547.19
75071.4259.40.2657.96.95623241081410.8547.19
90066.247.00.0606.90.052921410.8547.19
100031.80006.9001410.8547.19
110019.70006.9001410.8547.19
14002.10006.9001410.8547.19
表1  316LN不锈钢的各向同性硬化参数和Chaboche混合硬化参数[9]
图5  316LN不锈钢室温循环应力-应变曲线的计算结果与实验数据[23]对比
T / oCfAbn
6000.100.050.59
6800.200.190.50
7500.300.540.34
8250.400.790.26
9000.840.320.33
10001.000.680.37
表2  304L不锈钢的动态退火模型材料参数
图6  新开发的动态退火模型的UHARD子程序流程图
图7  304L不锈钢动态退火模型计算结果与实验数据[4]对比
图8  316不锈钢对接接头的有限元网格
CaseStrain hardening modelAnnealing model
AIsotropicNeglected
BIsotropicSingle-stage model with TA = 1000℃
CIsotropicNew time-temperature-dependent model
DChaboche mixed isotropic-kinematicNeglected
EChaboche mixed isotropic-kinematicSingle-stage model with TA = 1000℃
表3  有限元计算案例
图9  Satoh数值实验的轴向应力模拟结果与实验结果[28]对比(a) cases A and D (b) cases B, C, and E
图10  Satoh数值实验第1次和第2次热循环中累积塑性应变的形成过程
图11  316不锈钢对接接头最后一道的焊接热循环模拟结果与实验测量值[16]对比
图12  316不锈钢对接接头的周向残余应力分布(a) case A (b) case B (c) case C(d) case D (e) case E
图13  316不锈钢对接接头的轴向残余应力分布(a) case A (b) case B (c) case C(d) case D (e) case E
图14  316不锈钢对接接头外表面的周向和轴向残余应力模拟结果与实验测量值[16]对比
图15  316不锈钢对接接头内表面的周向和轴向残余应力模拟结果与实验测量值[16]对比
图16  316不锈钢对接接头沿焊缝中心线的周向和轴向残余应力模拟结果与实验测量值[16,17]对比
图17  316不锈钢对接接头沿焊缝中心线的累积塑性应变模拟结果对比
图18  最后一道焊接热循环中点P的累积塑性应变和周向应力形成过程的模拟结果(a) case B (b) case C
CaseHoop residual stress / MPaAxial residual stress / MPa
FE-SMFE-ISFE-DHDFE-SMFE-ISFE-DHD
A79285894-23-85
B19-62643-18-83
C13-111839-15-83
D30-35-2237-6-84
E-15-72-564-3-83
表4  316不锈钢对接接头残余应力模拟结果与测量值[16,17]的平均差异
1 Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
1 明洪亮, 张志明, 王俭秋等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 57
2 Kansai Electric Power Company. Results of the investigation on the welded joint in the pressurizer spray line piping of the unit 3 of the Oi nuclear power plant (Data set) [R]. Tokyo: Nuclear Regulation Authority, 2020
2 関西電力株式会社. 大飯発電所3号機加圧器スプレイライン配管溶接部の調査結果 (データ集) [R]. 東京: 原子力規制委員会, 2020
3 Mankins W L. Recovery, recrystallization, and grain-growth structures [A]. ASM Handbook, Vol.9: Metallography and Microstructures [M]. Ohio: ASM International, 2004: 207
4 Qiao D X. Strain hardening recovery and its influence on welding residual stresses in reactor safe-end in power plants [D]. Beijing: Tsinghua University, 2013
4 乔东虓. 核电安全端焊接中应变硬化回复及其对残余应力的影响 [D]. 北京: 清华大学, 2013
5 Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626
5 邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626
6 Zang W L, Gunnars J, Dong P S, et al. Improvement and validation of weld residual stress modelling procedure [R]. Stockholm: Swedish Radiation Safety Authority, 2009
7 Xu J J, Gilles P, Duan Y G, et al. Temperature and residual stress simulations of the NeT single-bead-on-plate specimen using SYSWELD [J]. Int. J. Press. Vessels Pip., 2012, 99-100: 51
8 Xu J J. Effect of material hardening model on welding residual stresses of 316L stainless steel [J]. Trans. China Weld. Inst., 2014, 35(3): 97
8 徐济进. 材料硬化模型对316L不锈钢焊接残余应力的影响 [J]. 焊接学报, 2014, 35(3): 97
9 Muránsky O, Hamelin C J, Smith M C, et al. The effect of plasticity theory on predicted residual stress fields in numerical weld analyses [J]. Comput. Mater. Sci., 2012, 54: 125
10 Muránsky O, Hamelin C J, Patel V I, et al. The influence of constitutive material models on accumulated plastic strain in finite element weld analyses [J]. Int. J. Solids Struct., 2015, 69-70: 518
11 Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint [J]. J. Mater. Eng. Perform., 2017, 26: 1494
12 Wang Q, Liu X S, Wang P, et al. Numerical simulation of residual stress in 10Ni5CrMoV steel weldments [J]. J. Mater. Process. Technol., 2017, 240: 77
13 Geng L Y, Tu S D, Gong J M, et al. Simulation of residual stress in butt girth welding of ultra-thick 13MnNiMoR steel cylinder by different material hardening models [J]. Mater. Mech. Eng., 2019, 43(3): 60
13 耿鲁阳, 涂善东, 巩建鸣等. 不同材料硬化模型模拟13MnNiMoR钢超厚圆筒对接环焊接残余应力 [J]. 机械工程材料, 2019, 43(3): 60
14 Yu X H, Qiao D X, Feng Z L, et al. High temperature dynamics strain hardening behavior in stainless steels and nickel alloys [A]. Proceedings of the ASME 2014 Pressure Vessels and Piping Conference [C]. Anaheim, CA, USA: ASME, 2014: V06BT06A072
15 Yu X H, Crooker P, Wang Y L, et al. High-temperature deformation constitutive law for dissimilar weld residual stress modeling: Effect of thermal load on strain hardening [A]. Proceedings of the ASME 2015 Pressure Vessels and Piping Conference [C]. Boston, MA, USA: ASME, 2015: V06BT06A073
16 Japan Nuclear Energy Safety Organization. Annual report on the integrity assessment of flawed components with structural discontinuity [R]. Tokyo: Japan Nuclear Energy Safety Organization, 2005
16 原子力安全基盤機構. 複雑形状部機器配管健全性実証事業に関する報告書 [R]. 東京: 原子力安全基盤機構, 2005
17 Hojo K, Ogawa K, Ogawa N, et al. Sensitivity analysis of residual stress simulation of dissimilar metal joint of safe end nozzle and key issues for standard procedure to maintenance rules [A]. Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference [C]. Bellevue, WA, USA: ASME, 2010: 929
18 Ruud C O. Residual stress measurements [A]. ASM Handbook, Vol.8: Mechanical Testing and Evaluation [M]. Ohio: ASM International, 2000: 886
19 Ma N S, Nakacho K, Ohta T, et al. Inherent strain method for residual stress measurement and welding distortion prediction [A]. Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering [C]. Busan, South Korea: ASME, 2016: V009T13A001
20 Ogawa K, Chidwick L O, Kingston E J, et al. Measurement of residual stresses in the dissimilar metal weld joint of a safe-end nozzle component [A]. Proceedings of the ASME 2009 Pressure Vessels and Piping Conference [C]. Prague, Czech Republic: ASME, 2009: 529
21 Dai P Y, Hu X, Lu S J, et al. Influence of size factor on calculation accuracy of welding residual stress of stainless steel pipe by 2D axisymmetric model [J]. Acta Metall. Sin., 2019, 55: 1058
21 戴培元, 胡 兴, 逯世杰等. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响 [J]. 金属学报, 2019, 55: 1058
22 Lu S J, Wang H, Dai P Y, et al. Effect of creep on prediction accuracy and calculating efficiency of residual stress in post weld heat treatment [J]. Acta Metall. Sin., 2019, 55: 1581
22 逯世杰, 王 虎, 戴培元等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响 [J]. 金属学报, 2019, 55: 1581
23 Depradeux L, Coquard R. Influence of viscoplasticity, hardening, and annealing effects during the welding of a three-pass slot weld (NET-TG4 round robin) [J]. Int. J. Press. Vessels Pip., 2018, 164: 39
24 Ludwik P. Elements der Technologischen Mechanik [M]. Berlin, Heidelberg: Springer-Verlag, 1909: 32
25 Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories [J]. Int. J. Plast., 2008, 24: 1642
26 Leblond J B, Mottet G, Devaux J, et al. Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour [J]. Mater. Sci. Technol., 1985, 1: 815
27 Satoh K. Transient thermal stresses of weld heat-affected zone by both-ends-fixed bar analogy [J]. Trans. Jpn. Weld. Soc., 1972, 3: 125
28 Depradeux L. Simulation numérique du soudage-acier 316L-validation sur cas tests de complexité croissante [D]. Lyon, France: INSA de Lyon, 2004
29 Deng D A, Zhang Y B, Li S, et al. Influence of solid-state phase transformation on residual stress in P92 steel welded joint [J]. Acta Metall. Sin., 2016, 52: 394
29 邓德安, 张彦斌, 李 索等. 固态相变对P92钢焊接接头残余应力的影响 [J]. 金属学报, 2016, 52: 394
30 Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532
30 邓德安, 任森栋, 李 索等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532
31 Dong P S. On the mechanics of residual stresses in girth welds [J]. J. Press. Vessel Technol., 2007, 129: 345
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[7] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[8] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[9] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[10] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[12] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[13] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[14] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[15] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.