Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1272-1280    DOI: 10.11900/0412.1961.2020.00402
  研究论文 本期目录 | 过刊浏览 |
45CrNiMoVA钢脉冲磁处理的强化机理
栾晓圣1, 梁志强2(), 赵文祥2, 石贵红1, 李宏伟3, 刘心藜3, 祝国荣3, 王西彬2
1.北京理工大学 机械与车辆学院 北京 100081
2.北京理工大学 先进加工技术国防重点学科实验室 北京 100081
3.北京北方车辆集团有限公司 北京 100072
Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment
LUAN Xiaosheng1, LIANG Zhiqiang2(), ZHAO Wenxiang2, SHI Guihong1, LI Hongwei3, LIU Xinli3, ZHU Guorong3, WANG Xibin2
1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2.Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081, China
3.Beijing North Vehicle Group Corporation, Beijing 100072, China
引用本文:

栾晓圣, 梁志强, 赵文祥, 石贵红, 李宏伟, 刘心藜, 祝国荣, 王西彬. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280.
Xiaosheng LUAN, Zhiqiang LIANG, Wenxiang ZHAO, Guihong SHI, Hongwei LI, Xinli LIU, Guorong ZHU, Xibin WANG. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. Acta Metall Sin, 2021, 57(10): 1272-1280.

全文: PDF(2023 KB)   HTML
摘要: 

采用脉冲磁场对珠光体态和回火马氏体态45CrNiMoVA钢分别进行了磁化处理,基于纳米压痕实验结果,分析了脉冲磁处理对残余应力、硬度和弹性模量的影响规律;基于磁滞回线的测量和磁力显微镜的观察结果,分析了脉冲磁处理对磁畴微观组织结构的影响。结果表明,脉冲磁处理能够引起试样表面残余压应力增加;脉冲磁处理后珠光体态和回火马氏体态45CrNiMoVA钢硬度分别增加1.85%和1.84%;脉冲磁处理对珠光体态下的弹性模量影响较小,但对回火马氏体态下的弹性模量影响较大,脉冲磁处理后回火马氏体态的弹性模量增加4.48%;磁化过程中,磁畴运动引起微区材料的应力应变是导致材料力学性能强化的主要机制。

关键词 45CrNiMoVA钢脉冲磁场磁畴运动强化机理    
Abstract

Understanding the mechanism of the effects of magnetization treatment on the mechanical properties of materials for applications in magnetic field-assisted machining and magnetic treatment strengthening is of great significance. Pearlite and tempered martensite 45CrNiMoVA steels were magnetized by a pulsed magnetic field. Nanoindentation experiments were conducted to examine the effects of a pulsed magnetic field on the residual stress, hardness, and elastic modulus. The effect of pulsed magnetic treatment on the microstructure of the magnetic domain was analyzed by measuring the hysteresis loop and via magnetic microscopy. A magnetic pulse treatment could increase the residual compressive stress on the sample surface. The hardness of pearlite and tempered martensite 45CrNiMoVA steel was increased by 1.85% and 1.84%, respectively, after the magnetic pulse treatment. The magnetic pulse treatment had an insignificant effect on the elastic modulus of pearlite 45CrNiMoVA steel but had a considerable effect on tempered martensite 45CrNiMoVA steel. After the magnetic pulse treatment, the elastic modulus of the tempered martensite 45CrNiMoVA steel increased by 4.48%. In the magnetization process, the stress and strain of the micro-region material caused by the movement of the magnetic domains was the main mechanism responsible for strengthening the mechanical properties of 45CrNiMoVA steel.

Key words45CrNiMoVA steel    pulsed magnetic field    magnetic domain motion    strengthening mechanism
收稿日期: 2020-10-10     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2019YFB1311100);国家自然科学基金项目(51975053);基础科研项目(DEDPHF、DEDPZF、DEDPYDJ)
作者简介: 栾晓圣,男,1992年生,博士生
图1  不同热处理条件下45CrNiMoVA钢的微观组织(a) pearlite (P), annealed(b) tempered martensite (TM)
图2  脉冲磁化处理设备结构示意图
Specimen labelMicrostructure of specimenMagnetization state
1PearliteMagnetization
2Unmagnetized
3Tempered martensiteMagnetization
4Unmagnetized
表1  45CrNiMoVA钢脉冲磁化处理实验方案
图3  典型纳米压痕载荷-位移曲线及重要的加载/卸载参数示意图
图4  磁化处理前后45CrNiMoVA钢的纳米压痕加载-位移曲线(a) pearlite(b) tempered martensite
图5  残余应力对纳米压痕载荷-位移曲线的影响规律
图6  磁化处理前后45CrNiMoVA钢表面残余应力的变化
MicrostructureMagnetization stateS

hs

nm

hc

nm

hmax

nm

Ac

nm2

Pmax

mN

Pres

mN

σR

MPa

PUnmagnetized1.73122.541909.312031.8589317820293.215.5662.2
Magnetization1.71125.831889.342015.1787458085298.77
TMUnmagnetized1.71262.411994.111731.7073476586622.514.2557.8
Magnetization1.76256.161978.271722.1072660224626.76
表2  基于纳米压痕曲线的残余应力计算结果
图7  磁化处理对45CrNiMoVA钢硬度的影响(a) pearlite(b) tempered martensite
图8  磁化处理对45CrNiMoVA钢弹性模量的影响(a) pearlite(b) tempered martensite
图9  45CrNiMoVA钢的磁性能及分析(a) measurement results of hysteresis loop(b) schematic diagram of domain motion in different magnetization stages
图10  磁化处理对45CrNiMoVA钢磁畴结构形貌的影响(a) unmagnetized pearlite(b) magnetized pearlite(c) unmagnetized tempered martensite(d) magnetized tempered martensite
1 Jiang F, Yan L, Huang Y, et al. Review on magnetic field assisted machining technology [J]. J. Mech. Eng., 2016, 52(17): 1
1 姜 峰, 言 兰, 黄 阳等. 磁场辅助加工的研究现状及其发展趋势 [J]. 机械工程学报, 2016, 52(17): 1
2 Ye H S, Du X. Research on key technology of titanium alloy ultra-recision cutting based on magnetic field assistance [J]. J. Mech. Eng., 2020, 56(9): 222
2 叶惠思, 杜 雪. 基于磁场辅助的钛合金超精密切削关键技术研究 [J]. 机械工程学报, 2020, 56(9): 222
3 Azhiri R B, Jadidi A, Teimouri R. Electrical discharge turning by assistance of external magnetic field, part II: Study of surface integrity [J]. Int. J. Lightweight Mater. Manuf., 2020, 3: 305
4 El Mansori M, Iordache V, Seitier P, et al. Improving surface wearing of tools by magnetization when cutting dry [J]. Surf. Coat. Technol., 2004, 188-189: 566
5 Dehghani A, Amnieh S K, Tehrani A F, et al. Effects of magnetic assistance on improving tool wear resistance and cutting mechanisms during steel turning [J]. Wear, 2017, 384-385: 1
6 Muju M K, Ghosh A. Effect of a magnetic field on the diffusive wear of cutting tools [J]. Wear, 1980, 58: 137
7 Miller P C. Look at magnetic treatment of tools and wear surfaces [J]. Tooling Prod., 1990, 55: 100
8 Nikiforov Y P, Krasichkov A A, Lobachkov E A. Unit for magnetic hardening of cutting and forming tools [J]. Sov. Eng. Res., 1989, 9: 116
9 Çelik A, Yetim A F, Alsaran A, et al. Effect of magnetic treatment on fatigue life of AISI 4140 steel [J]. Mater. Des., 2005, 26: 700
10 Kida K, Santos E C, Uryu M, et al. Changes in magnetic field intensities around fatigue crack tips of medium carbon low alloy steel (S45C, JIS) [J]. Int. J. Fatigue, 2013, 56: 33
11 Fahmy Y, Hare T, Tooke R, et al. Effects of a pulsed magnetic treatment on the fatigue of low carbon steel [J]. Scr. Mater., 1998, 38: 1355
12 Shao Q, Wang G, Wang H D, et al. Improvement in uniformity of alloy steel by pulsed magnetic field treatment [J]. Mater. Sci. Eng., 2021, A799: 140143
13 Xu Q D, Li K J, Cai Z P, et al. Effect of pulsed magnetic field on the microstructure of TC4 Titanium alloy and its mechanism [J]. Acta Metall. Sin., 2019, 55: 489
13 许擎栋, 李克俭, 蔡志鹏等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究 [J]. 金属学报, 2019, 55: 489
14 Li G R, Wang F F, Zheng R, et al. Microstructural evolution and strengthening mechanism of al alloy matrix composites by applied high pulsed electromagnetic field [J]. Chin. J. Mater. Res., 2016, 30: 745
14 李桂荣, 王芳芳, 郑 瑞等. 脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制 [J]. 材料研究学报, 2016, 30: 745
15 Cai Z P, Lin J. Study on the relation of magnatostriction and residual stress relief in the process of magnetic treatment [J]. J. Mech. Eng., 2010, 46(22): 36
15 蔡志鹏, 林 健. 磁处理过程中磁致伸缩与残余应力关系的研究 [J]. 机械工程学报, 2010, 46(22): 36
16 Luo C, Li Z L, Cao H Z, et al. Influence mechanism of residual tensile stress in SKD11 steel caused by pulse magnetic field treatment [J]. China Mech. Eng., 2016, 27: 1535
16 罗 丞, 李正龙, 曹洪志等. 脉冲磁场处理对SKD11模具钢残余拉应力的影响机理分析 [J]. 中国机械工程, 2016, 27: 1535
17 Chen F T, Zhang Y X, Lu X C, et al. Determination of dynamic fracture toughness of 45CrNiMoVA steel [J]. Ordn. Mater. Sci. Eng., 1990, (1): 38
17 陈福泰, 张永信, 吕晓春等. 45CrNiMoVA钢动态断裂韧度的测定 [J]. 兵器材料科学与工程, 1990, (1): 38
18 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: A dvances in understanding and refinements to methodology [J]. J. Mater. Res., 2004, 19: 3
19 Dong M L, Jin G, Wang H D, et al. The research status of nanoindetation methods for measuring residual stresses [J]. Mater. Rev., 2014, 28(3): 107
19 董美伶, 金 国, 王海斗等. 纳米压痕法测量残余应力的研究现状 [J]. 材料导报, 2014, 28(3): 107
20 Lee Y H, Kwon D. Residual stresses in DLC/Si and Au/Si systems: application of a stress-relaxation model to the nanoindentation technique [J]. J. Mater. Res., 2002, 17: 901
21 Suresh S, Giannakopoulos A E. A new method for estimating residual stresses by instrumented sharp indentation [J]. Acta Mater., 1998, 46: 5755
22 Miao X, Qian D S, Song Y L. Influence rule of steel GCr15 in process of cold ring rolling-quenching by magnetic treatment [J]. J. Mech. Eng., 2014, 50(16): 112
22 缪 霞, 钱东升, 宋燕利. 磁处理对GCr15轴承环冷轧-淬火残余应力影响规律 [J]. 机械工程学报, 2014, 50(16): 112
23 Lin J, Zhao H Y, Cai Z P, et al. Study on the relationship between magneto-vibration and residual stress in steel materials [J]. Acta Metall. Sin., 2008, 44: 451
23 林 健, 赵海燕, 蔡志鹏等. 钢铁材料中残余应力与磁致振动的相互作用关系 [J]. 金属学报, 2008, 44: 451
24 Sun E X, Yang D Z, Xu Z Y, et al. Pulsed magnetic field-induced martensitic transformation in an Fe-21Ni-4Mn alloy [J]. Acta Metall. Sin., 1990, 26: A242
24 孙恩喜, 杨大智, 徐祖耀等. F6-21Ni-4Mn合金强脉冲磁场诱发马氏体相变的研究 [J]. 金属学报, 1990, 26: A242
25 Choi J K, Ohtsuka H, Xu Y, et al. Effects of a strong magnetic field on the phase stability of plain carbon steels [J]. Scr. Mater., 2000, 43: 221
26 Ma L P, Liang Z Q, Wang X B, et al. Influence of pulsed magnetic treatment on microstructures and mechanical properties of M42 high speed steel tool [J]. Acta Metall. Sin., 2015, 51: 307
26 马利平, 梁志强, 王西彬等. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响 [J]. 金属学报, 2015, 51: 307
27 Veligatla M, Garcia-Cervera C J, Müllner P. Magnetic domain-twin boundary interactions in Ni-Mn-Ga [J]. Acta Mater., 2020, 193: 221
28 Ma L P, Zhao W X, Liang Z Q, et al. An investigation on the mechanical property changing mechanism of high speed steel by pulsed magnetic treatment [J]. Mater. Sci. Eng., 2014, A609: 16
29 Ferreira P J, Sande J B V. Magnetic field effects on twin dislocations [J]. Scr. Mater., 1999, 41: 117
30 Wu G H, Hou T P, Wu K M, et al. Influence of high magnetic field on carbides and the dislocation density during tempering of high Chromium-containing steel [J]. J. Magn. Magn. Mater., 2019, 479: 43
31 Varga Z, Filipcsei G, Zrínyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus [J]. Polymer, 2006, 47: 227
32 Zheng T X, Shi P J, Shen Z, et al. Diffusion-controlled mechanical property-enhancement of Al-20wt.%Si ribbon annealed under high static magnetic fields, from the microscale to the atomic scale [J]. Mater. Des., 2020, 188: 108476
33 Datta S, Atulasimha J, Mudivarthi C, et al. Stress and magnetic field-dependent Young's modulus in single crystal iron-gallium alloys [J]. J. Magn. Magn. Mater., 2010, 322: 2135
34 Qiu F S. Research on magnetic domain wall dynamic behaviors for stress characterization [D]. Chengdu: University of Electronic Science and Technology of China, 2019
34 邱发生. 基于磁畴动态行为特征的应力表征研究 [D]. 成都: 电子科技大学, 2019
35 Zhong W D. Ferromagnetism [M]. 2nd Ed., Beijing: Science Press, 2017: 31
35 钟文定. 铁磁学: 下册 [M]. 第2版, 北京: 科学出版社, 2017: 31
[1] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
[2] 许帅, 孙新军, 梁小凯, 刘俊, 雍岐龙. 热轧变形量对高钛耐磨钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1581-1591.
[3] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[4] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[5] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[6] 滕跃飞,李应举,冯小辉,杨院生. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响*[J]. 金属学报, 2015, 51(7): 844-852.
[7] 王长军 雍岐龙 孙新军 毛新平 李昭东 雍兮. Ti和Mn含量对CSP工艺Ti微合金钢析出特征与强化机理的影响[J]. 金属学报, 2011, 47(12): 1541-1549.
[8] 宁永权 姚泽坤 谢兴华 郭鸿镇 谭立军 陶宇. 热模锻造+直接时效粉末高温合金的强化机制[J]. 金属学报, 2010, 46(3): 324-328.
[9] 王晓伟; 马继 . 低频脉冲磁场方法处理铁基非晶合金的内耗研究[J]. 金属学报, 2003, 39(11): 1215-1218 .
[10] 孙旭东; 梁勇; 张民; 李继光; 李晓东; 肖永亮 . Al2O3/SiC纳米陶瓷复合材料的强化机理[J]. 金属学报, 1999, 35(8): 879-882 .
[11] 孙恩喜;杨大智;徐祖耀;杨伏明;赵汝文. F6-21Ni-4Mn合金强脉冲磁场诱发马氏体相变的研究[J]. 金属学报, 1990, 26(4): 12-17.
[12] 许伯钧;谷南驹;阎殿然;殷福星. 低、中强度脉冲磁场回火对高速钢的组织和性能的影响[J]. 金属学报, 1989, 25(5): 42-48.