Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 855-870    DOI: 10.11900/0412.1961.2021.00532
  研究论文 本期目录 | 过刊浏览 |
初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响
李福林1,2, 付锐1,2(), 白云瑞3, 孟令超1,2, 谭海兵3, 钟燕3, 田伟3, 杜金辉1,2, 田志凌2
1北京钢研高纳科技股份有限公司 北京 100081
2钢铁研究总院有限公司 北京 100081
3中国航发四川燃气涡轮研究院 成都 610400
Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy
LI Fulin1,2, FU Rui1,2(), BAI Yunrui3, MENG Lingchao1,2, TAN Haibing3, ZHONG Yan3, TIAN Wei3, DU Jinhui1,2, TIAN Zhiling2
1GaoNa Aero Material Co., Ltd., Beijing 100081, China
2Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
3AECC Sichuan Gas Turbine Research Institute, Chengdu 610400, China
引用本文:

李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
Fulin LI, Rui FU, Yunrui BAI, Lingchao MENG, Haibing TAN, Yan ZHONG, Wei TIAN, Jinhui DU, Zhiling TIAN. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. Acta Metall Sin, 2023, 59(7): 855-870.

全文: PDF(8406 KB)   HTML
摘要: 

以镍基变形高温合金GH4096为研究对象,进行了不同组织状态下的热压缩实验,分析了该合金热变形流变行为特点,并采用OM、SEM、EBSD和TEM等手段研究了热压缩过程中初始晶粒尺寸(晶界面积和数量)和强化相对动态再结晶行为及组织演变的影响。结果表明:在1050~1120℃温度范围内,随着初始晶粒尺寸的减小,峰值流变应力降低,动态再结晶分数增加,实现完全动态再结晶所需热变形温度降低,发生动态再结晶的临界应变降低;在亚固溶温度下热变形时,动态再结晶晶粒尺寸与初始晶粒尺寸和变形量没有相关性;计算了与初始晶粒尺寸相关的热变形激活能,并建立了与热变形前的初始晶粒尺寸相关的热变形本构方程;研究了铸态组织中强化相γ'相形态对热变形行为的影响,在亚固溶温度下热变形时,随着强化相γ'相尺寸的增加,可一定程度降低热变形峰值流变应力,降低动态再结晶的临界应变,提高动态再结晶分数。分析讨论了GH4096合金不同组织状态下的主导动态软化机制。

关键词 动态再结晶初始晶粒尺寸晶界强化相GH4096热变形    
Abstract

GH4096 alloy were used for disks and shafts of advanced gas turbine engines owing to its excellent properties such as resistance to creep, fatigue, and corrosion as well as microstructure stability up to about 700oC. In this study, GH4096, a hard-to-deform disk superalloy, was processed through an advanced cast and wrought route to avoid the expensive power metallurgy (P/M) route. Many types of full-scale disk forgings possessing homogeneous fine-grained microstructures were successfully carried out, and the ultrasonic inspectability was comparative to that of the alloy produced by the P/M route. The effects of the initial grain size and strengthening phase on hot deformation behavior and dynamic recrystallization (DRX) were studied by OM, SEM, EBSD, and TEM under different deformation parameters. The results showed that as the initial grain size decreased within the temperature range of 1050-1120oC, the flow peak stresses decreased and the fractions of DRX increased. With an increase in the initial grain size, the thermal deformation temperature required for complete dynamic recrystallization decreased, and also the critical strain of dynamic recrystallization decreased. The initial grain size and the strain did not affect the recrystallized grain size when deformed at a sub-solvus temperature. The thermal deformation constitutive equations related to the initial grain sizes were established and the activation energies of thermal deformation related to the original grain sizes were calculated. The effect of γ' phase size on the thermal deformation behavior in as-cast microstructure was studied. In the sub-solvus temperature range, the thermal deformation resistance could be effectively reduced with the increase in the size of γ' phase, the critical strain of DRX was decreased, and the DRX fraction was also increased. The dynamic recrystallization mechanisms related to the γ' phase and initial grain size were also discussed. DRX nucleation takes place at the sub-grains near original grain boundaries for samples with larger initial grain size deformed at sub-solvus temperature. For samples with fine initial grain size, the interface slip of incoherent γ' phase is the significant dynamic softening mechanism during the sub-solvus temperature deformation. For as-cast samples, the main dynamic softening mechanism is original grain boundary bowing out DRX nucleation and coarse second-phase-induced DRX nucleation.

Key wordsdynamic recrystallization    initial grain size    grain boundary    strengthening phase    GH4096    hot deformation
收稿日期: 2021-12-06     
ZTFLH:  TG146.1  
基金资助:中国博士后科学基金项目(2017M6132235)
通讯作者: 付 锐,furui208@sina.com,主要从事变形高温合金材料及先进制备技术的研究与开发
Corresponding author: FU Rui, professor, Tel: (010)62182410, E-mail: furui208@sina.com
作者简介: 李福林,男,1987年生,高级工程师,博士
图1  4种具备不同初始晶粒尺寸的试样(d1~d4)热压缩前金相组织
图2  2种铸态试样(c1和c2)经不同工艺处理后热压缩前的组织
图3  不同初始组织试样(d1~d4)在应变速率为0.1 s-1和不同温度下热压缩的真应力-真应变曲线及峰值流变应力曲线
图4  2种铸态试样(c1和c2)在亚固溶温度1060和1080℃下的热压缩流变真应力-真应变曲线
图5  c1和c2试样热压缩过程的动态再结晶临界应变(应变速率为0.1 s-1)
Sample0.10.20.40.60.81.0
d10.00680.00660.00670.00700.00730.0076
d20.00730.00690.00690.00720.00780.0079
d30.00800.00790.00860.00920.00990.0098
d40.00980.00980.01040.01040.01030.0102
表1  不同初始组织试样(d1~d4)在不同真应变下热变形的常数α值 (MPa-1)
Sampleα / MPa-1nQ / (kJ·mol-1)
d10.00704.641713
d20.00744.271489
d30.00874.091230
d40.00103.27400
表2  不同初始组织试样(d1~d4)的平均α值、应力指数n和热变形激活能Q
图6  d2试样峰值应力与应变速率和温度倒数的函数关系
图7  不同初始组织试样(d1和d2) Z参数与峰值应力的函数关系
图8  不同初始晶粒尺寸的试样(d1~d4)在应变速率为0.1 s-1和工程应变为50%时不同温度下热压缩后的金相组织
图9  d4试样在1100℃、0.1 s-1下经过不同工程应变热压缩后的OM像
图10  不同初始组织试样(d1~d4)热压缩过程中的动态再结晶临界应变
图11  d2试样在1100℃下热压缩后通过EBSD采集到的晶界-亚晶界再结晶组织演化及取向差统计
图12  d4试样在1100℃下热压缩后晶界-亚晶界组织的EBSD像
图13  粗晶d2试样在1100℃、0.1 s-1,工程应变为30%和50%时热压缩后显微组织的TEM像
图14  细晶d4试样在1100℃、0.1 s-1,不同应变热压缩后显微组织的TEM像
图15  铸态试样(c1和c2)热压缩(50%、0.1 s-1)后晶界-亚晶界EBSD像
图16  c2试样经过1060℃、50%、0.1 s-1热变形后显微组织的SEM像及γ'相与再结晶晶粒的交互作用
图17  铸态试样(c1和c2)经过1060℃、0.1 s-1热压缩(50%)后显微组织的TEM像
1 Tian W, Zhong Y, Liu Y F, et al. Development and testing of novel casted & wrought GH4096 alloy labyrinth disk [J]. Rare Met. Mater. Eng., 2021, 50: 1325
1 田 伟, 钟 燕, 刘砚飞 等. 新型铸&锻GH4096合金篦齿盘研制与考核 [J]. 稀有金属材料与工程, 2021, 50: 1325
2 Reed R C. The Superalloys Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 1
3 Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater., 2016, 36(3): 27
3 杜金辉, 赵光普, 邓 群 等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27
4 Tian S F, Zhang G Q, Li Z, et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J. Aeronaut. Mater., 2003, 23(suppl.1) : 233
4 田世藩, 张国庆, 李 周 等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(): 233
5 Fu R, Chen X C, Ren H, et al. Structure and hot deformation behavior of ESR-CDS René88DT [J]. J. Aeronaut. Mater., 2011, 31(3): 8
5 付 锐, 陈希春, 任 昊 等. 电渣重熔连续定向凝固René88DT合金的组织与热变形行为 [J]. 航空材料学报, 2011, 31(3): 8
6 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
6 杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
7 Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China [J]. Acta Metall. Sin., 2021, 57: 1215
doi: 10.11900/0412.1961.2021.00153
7 张 瑞, 刘 鹏, 崔传勇 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望 [J]. 金属学报, 2021, 57: 1215
8 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
doi: 10.1016/0001-6160(66)90207-0
9 Ning Y Q, Yao Z K, Li H, et al. High temperature deformation behavior of hot isostatically pressed P/M FGH4096 superalloy [J]. Mater. Sci. Eng., 2010, A527: 961
10 Wang Y, Shao W Z, Zhen L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. J. Alloys Compd., 2009, 471: 331
doi: 10.1016/j.jallcom.2008.03.082
11 Srinivasan N, Prasad Y V R K, Rao P R. Hot deformation behaviour of Mg-3Al alloy—A study using processing map [J]. Mater. Sci. Eng., 2008, A476: 146
12 Monajati H, Taheri A K, Jahazi M, et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy [J]. Metall. Mater. Trans., 2005, 36A: 895
13 Wu K, Liu G Q, Hu B F, et al. Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy [J]. Mater. Sci. Eng., 2011, A528: 4620
14 Mostafaei M A, Kazeminezhad M. Hot deformation behavior of hot extruded Al-6Mg alloy [J]. Mater. Sci. Eng., 2012, A535: 216
15 Zhang M J, Li F G, Wang S Y, et al. Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy [J]. Mater. Sci. Eng., 2010, A527: 6771
16 Samantaray D, Mandal S, Bhaduri A K. Optimization of hot working parameters for thermo-mechanical processing of modified 9Cr-1Mo (P91) steel employing dynamic materials model [J]. Mater. Sci. Eng., 2011, A528: 5204
17 Gu Y, Zhong Z, Yuan Y, et al. An advanced cast-and-wrought superalloy (TMW-4M3) for turbine disk applications beyond 700oC [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 903
18 Ning Y Q, Yao Z K, Lei Y Y, et al. Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure [J]. Mater. Charact., 2011, 62: 887
doi: 10.1016/j.matchar.2011.06.004
19 Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel [J]. Mater. Sci. Eng., 2011, A528: 3876
20 Ozturk U, Cabrera J M, Calvo J. High-temperature deformation of inconel 718PlusTM [J]. J. Eng. Gas Turbines Power, 2017, 139: 032101
21 Huron E, Srivatsa S, Raymond E. Control of grain size via forging strain rate limits for R'88DT [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 49
22 Zhou H T, Liu R R, Liu Z C, et al. Hot deformation characteristics of GH625 and development of a processing map [J]. J. Mater. Eng. Perform., 2013, 22: 2515
doi: 10.1007/s11665-013-0558-3
23 Wang Y, Shao W Z, Zhen L, et al. Hot deformation behavior of delta-processed superalloy 718 [J]. Mater. Sci. Eng., 2011, A528: 3218
24 Li H Y, Gao Z H, Yin H, et al. Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum [J]. Scr. Mater., 2013, 68: 59
doi: 10.1016/j.scriptamat.2012.09.026
25 Ning Y Q, Yao Z K, Fu M W, et al. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism [J]. Mater. Sci. Eng., 2011, A528: 8065
26 Fahrmann M, Suzuki A. Effect of cooling rate on gleeble hot ductility of UDIMET alloy 720 billet [A]. Superalloys 2008 [M]. Warrendale, PA: TMS, 2008: 311
27 Wang C Y, Song X J, Zou J W, et al. Effect of original microstructure on thermal compression deformation behavior and microstructure of FGH96 alloy [J]. Hot Work. Technol., 2019, 48(11): 39
27 王超渊, 宋晓俊, 邹金文 等. 原始组织对FGH96合金热压缩变形行为和组织的影响 [J]. 热加工工艺, 2019, 48(11): 39
28 Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ + γ' duplex aggregates generated during thermomechanical processing of nickel-base superalloys [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendale, PA: TMS, 2016: 487
29 Fu R, Li F L, Yin F J, et al. Microstructure evolution and deformation mechanisms of the electroslag refined-continuous directionally solidified (ESR-CDS®) superalloy Rene88DT during isothermal compression [J]. Mater. Sci. Eng., 2015, A638: 152
30 Lu X D, Du J H, Deng Q, et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy [J]. J. Alloys Compd., 2009, 486: 195
doi: 10.1016/j.jallcom.2009.07.020
31 Li F L, Fu R, Yin F J, et al. Impact of γ' (Ni3(Al, Ti)) phase on dynamic recrystallization of a Ni-based disk superalloy during isothermal compression [J]. J. Alloys Compd., 2017, 693: 1076
doi: 10.1016/j.jallcom.2016.09.258
32 Liu Y. Study of hot deformation behavior of Ni-Cr-W base superalloy [D]. Xi'an: Northwestern Polytechnical University, 2010
32 刘 毅. Ni-Cr-W基高温合金的热变形行为研究 [D]. 西安: 西北工业大学, 2010
33 Yuan H, Liu W C. Effect of the δ phase on the hot deformation behavior of Inconel l718 [J]. Mater. Sci. Eng., 2005, A408: 281
34 Dehghan-manshadi A, Hodgson P D. Dependency of recrystallization mechanism to the initial grain size [J]. Metall. Mater. Trans., 2008, 39A: 2830
35 Belyakov A, Miura H, Sakai T. Dynamic recrystallization in ultra fine-grained 304 stainless steel [J]. Scr. Mater., 2000, 43: 21
doi: 10.1016/S1359-6462(00)00373-0
36 Oudin A, Barnett M R, Hodgson P D. Grain size effect on the warm deformation behaviour of a Ti-IF steel [J]. Mater. Sci. Eng., 2004, A367: 282
37 Fu R, Li F L, Yin F J, et al. Application of multiple integral forging in preparation of wrought superalloy FGH96 turbine disk [J]. Chin. J. Rare Met., 2017, 41: 113
37 付 锐, 李福林, 尹法杰 等. 多向整体锻造在变形FGH96合金涡轮盘制备中的应用 [J]. 稀有金属, 2017, 41: 113
38 Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ Int., 2003, 43: 684
doi: 10.2355/isijinternational.43.684
39 Stewart G R, Jonas J J, Montheillet F. Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless Steel [J]. ISIJ Int., 2004, 44: 1581
doi: 10.2355/isijinternational.44.1581
40 Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
40 刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
41 Forbord B, Hallem H, Ryum N, et al. Precipitation and recrystallisation in Al-Mn-Zr with and without Sc [J]. Mater. Sci. Eng., 2004, A387-389: 936
42 Wan Z P, Wang T, Sun Y, et al. Dynamic softening mechanisms of GH4720Li alloy during hot deformation [J]. Acta Metall. Sin., 2019, 55: 213
42 万志鹏, 王 涛, 孙 宇 等. GH4720Li合金热变形过程动态软化机制 [J]. 金属学报, 2019, 55: 213
doi: 10.11900/0412.1961.2018.00179
43 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Oxford: Elsevier Science Ltd., 1995: 1
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[9] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[13] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[14] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[15] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.