|
|
回火温度对1000 MPa级NiCrMoV低碳合金钢微观组织和低温韧性的影响 |
周成1, 赵坦2( ), 叶其斌3( ), 田勇1, 王昭东1, 高秀华1 |
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 2.鞍钢集团 海洋装备用金属材料及其应用国家重点实验室 鞍山 114009 3.江苏省(沙钢)钢铁研究院 张家港 215625 |
|
Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel |
ZHOU Cheng1, ZHAO Tan2( ), YE Qibin3( ), TIAN Yong1, WANG Zhaodong1, GAO Xiuhua1 |
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2.State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Group Corporation, Anshan 114009, China 3.Institute of Research of Iron and Steel, Sha-Steel, Zhangjiagang 215625, China |
引用本文:
周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPa级NiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
Cheng ZHOU,
Tan ZHAO,
Qibin YE,
Yong TIAN,
Zhaodong WANG,
Xiuhua GAO.
Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. Acta Metall Sin, 2022, 58(12): 1557-1569.
1 |
Klemm-Toole J, Benz J, Thompson S W, et al. A quantitative evaluation of microalloy precipitation strengthening in martensite and bainite [J]. Mater. Sci. Eng., 2019, A763: 138145
|
2 |
Zhang G H, Cheng L, Li Y, et al. Progress on marine corrosion resistant steels [J]. Mater. China, 2014, 33: 426
|
2 |
张国宏, 成林, 李钰 等. 海洋耐蚀钢的国内外进展 [J]. 中国材料进展, 2014, 33: 426
|
3 |
Abdollah-Zadeh A, Belbasy M. Effects of Mn and Cu on the mechanical properties of a high strength low alloy NiCrMoV steel [J]. J. Mater. Sci. Technol., 2005, 21: 470
|
4 |
Salemi A, Abdollah-Zadeh A. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel [J]. Mater. Charact., 2008, 59: 484
doi: 10.1016/j.matchar.2007.02.012
|
5 |
Lu J, Yu H, Yang S F. Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution [J]. Mater. Sci. Eng., 2021, A803: 140493
|
6 |
Zhang X J. Microhardness characterisation in developing high strength, high toughness and superior ballistic resistance low carbon Ni steel [J]. Mater. Sci. Technol., 2012, 28: 818
doi: 10.1179/1743284712Y.0000000015
|
7 |
Chen Q Y, Ren J K, Xie Z L, et al. Correlation between reversed austenite and mechanical properties in a low Ni steel treated by ultra-fast cooling, intercritical quenching and tempering [J]. J. Mater. Sci., 2020, 55: 1840
doi: 10.1007/s10853-019-04029-y
|
8 |
Dhua S K, Mukerjee D, Sarma D S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metall. Mater. Trans., 2001, 32A: 2259
|
9 |
Hou W, Liu Q D, Gu J F. Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7 Ni steel [J]. Mater. Sci. Eng., 2020, A780: 139186
|
10 |
Liu D S, Cheng B G, Chen Y Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans., 2013, 44A: 440
|
11 |
Otani K, Muraoka H, Tsuruta S, et al. Development of ultraheavy-gauge (210 mm thick) 800 N/mm2 tensile strength plate steel for racks of jack-up rigs [J]. Nippon Steel Tech. Rep., 1993, 58: 1
|
12 |
Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J]. Mater. Sci. Eng., 2001, A318: 197
|
13 |
Kim J I, Morris J W. The composition of precipitated austenite in 5.5Ni steel [J]. Metall. Mater. Trans., 1981, 12A: 1957
|
14 |
Saastamoinen A, Kaijalainen A, Nyo T T, et al. Direct-quenched and tempered low-C high-strength structural steel: The role of chemical composition on microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A760: 346
|
15 |
Xie Z J, Shang C J, Wang X L, et al. Microstructure-property relationship in a low carbon Nb-B bearing ultra-high strength steel by direct-quenching and tempering [J]. Mater. Sci. Eng., 2018, A727: 200
|
16 |
Hu J, Du L X, Dong Y, et al. Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel [J]. Mater. Charact., 2019, 152: 21
doi: 10.1016/j.matchar.2019.04.004
|
17 |
Jain D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides [J]. Metall. Mater. Trans., 2016, 47A: 3860
|
18 |
Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, A707: 270
|
19 |
Wang M, Liu Z Y, Li C G. Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels [J]. Acta Metall. Sin. (Engl. Lett.)., 2017, 30: 238
doi: 10.1007/s40195-016-0496-9
|
20 |
Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel [J]. Acta Mater., 2015, 86: 182
doi: 10.1016/j.actamat.2014.12.021
|
21 |
Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
|
22 |
Zou Y, Xu Y B, Wang G, et al. Improved strength-ductility-toughness balance of a precipitation-strengthened low-carbon medium-Mn steel by adopting intercritical annealing-tempering process [J]. Mater. Sci. Eng., 2021, A802: 140636
|
23 |
Wang D C, Cai Q W, Yu W, et al. Tempering microstructure and mechanical properties of an ultra high strength bainitic steel [J]. Trans. Mater. Heat Treat., 2013, 34(5): 143
|
23 |
万德成, 蔡庆伍, 余伟 等. 超高强贝氏体钢的回火组织与力学性能 [J]. 材料热处理学报, 2013, 34(5): 143
|
24 |
Srivatsa K, Srinivas P, Balachandran G, et al. Room temperature microstructure and property evaluation of a heat treated fully bainitic 20CrMoVTiB410 steel [J]. JOM, 2016, 68: 2704
doi: 10.1007/s11837-016-2063-2
|
25 |
Lee S, De Cooman B C. Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel [J]. Metall. Mater. Trans., 2014, 45A: 6039
|
26 |
Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
|
27 |
Han J B, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
|
28 |
Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing [J]. Mater. Sci. Eng., 2011, A528: 6661
|
29 |
Wang Z H, Hui W J, Xie Z Q, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel [J]. Acta Metall. Sin., 2020, 56: 1441
doi: 10.11900/0412.1961.2020.00139
|
29 |
王占花, 惠卫军, 谢志奇 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响 [J]. 金属学报, 2020, 56: 1441
doi: 10.11900/0412.1961.2020.00139
|
30 |
Li Z J, Xiao N M, Li D Z, et al. Influence of microstructure on impact toughness of G18CrMo2-6 steel during tempering [J]. Acta Metall. Sin., 2014, 50: 777
doi: 10.3724/SP.J.1037.2013.00747
|
30 |
李振江, 肖纳敏, 李殿中 等. G18CrMo2-6钢回火组织及冲击韧性研究 [J]. 金属学报, 2014, 50: 777
doi: 10.3724/SP.J.1037.2013.00747
|
31 |
Yan P, Liu Z D, Bao H S, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Des., 2014, 54: 874
doi: 10.1016/j.matdes.2013.09.017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|