Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1557-1569    DOI: 10.11900/0412.1961.2021.00147
  研究论文 本期目录 | 过刊浏览 |
回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响
周成1, 赵坦2(), 叶其斌3(), 田勇1, 王昭东1, 高秀华1
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.鞍钢集团 海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
3.江苏省(沙钢)钢铁研究院 张家港 215625
Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel
ZHOU Cheng1, ZHAO Tan2(), YE Qibin3(), TIAN Yong1, WANG Zhaodong1, GAO Xiuhua1
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Group Corporation, Anshan 114009, China
3.Institute of Research of Iron and Steel, Sha-Steel, Zhangjiagang 215625, China
引用本文:

周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
Cheng ZHOU, Tan ZHAO, Qibin YE, Yong TIAN, Zhaodong WANG, Xiuhua GAO. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. Acta Metall Sin, 2022, 58(12): 1557-1569.

全文: PDF(4430 KB)   HTML
摘要: 

利用SEM、TEM、EBSD等技术手段研究了回火温度(450~650℃)对NiCrMoV低碳合金钢显微组织的影响,并通过拉伸和冲击实验测试其力学性能,同时利用相变仪和DICTRA模拟方法分别分析了两相区回火过程中奥氏体逆相变过程和合金元素的配分行为。结果表明,NiCrMoV低碳合金钢经热轧-在线淬火后的显微组织由板条马氏体和自回火马氏体组成。回火温度从450℃升高到550℃,马氏体板条发生回复,马氏体-奥氏体(M-A)组元逐渐分解;经两相区600℃回火后,在回火马氏体边界处形成了4.8% (体积分数)的残余奥氏体;提高两相区回火温度到650℃,显微组织由层状分布的新鲜马氏体和临界铁素体组成。随着回火温度升高,NiCrMoV低碳合金钢在-80℃的冲击功呈现先增加后降低的趋势,在600℃回火时达到峰值160 J;同时,NiCrMoV低碳合金钢在600℃回火时获得了最佳的强塑性匹配,屈服强度1030 MPa,抗拉强度1104 MPa,延伸率18%。相变仪分析结果表明NiCrMoV低碳合金钢经600℃回火后逆转变奥氏体全部保留到室温,而在650℃回火后逆转变奥氏体发生相变并转变成新鲜马氏体。DICTRA模拟结果证明奥氏体稳定化元素C、Ni和Mn在600℃等温回火过程中的富集程度要显著高于650℃等温回火。

关键词 低碳合金钢回火温度低温韧性微观组织    
Abstract

The low carbon alloyed steel has been widely used in the shipbuilding and offshore structures owing to its high strength and toughness at low temperatures. To optimize the microstructure and mechanical properties of low carbon alloyed steel as well as investigate the relationship between them, this study focuses on the microstructure evolution and corresponding mechanical properties of a 1000 MPa grade NiCrMoV low carbon alloyed steel during tempering in the range of 450-650oC. Microstructures of lath martensite and autotempered martensite were obtained after hot rolling followed by direct water cooling to room temperature. The evolution of lath martensite and retained austenite on tempering was characterized using SEM and TEM. The distribution of the retained austenite was investigated using EBSD. The result shows that when the tempering temperature of the NiCrMoV low carbon alloyed steel is increased from 450oC to 550oC, the lath martensite recovers and the martensite-austenite component gradually decomposes. The retained austenite with 4.8% volume fraction was obtained after tempering at 600oC. The NiCrMoV low carbon alloyed steel obtained intercritical ferrite and fresh martensite when tempered at 650oC. The reverse transformation process of austenite was analyzed through a dilatometer curve. The partition behavior of alloying elements C, Ni, and Mn during intercritical tempering was analyzed kinetically through DICTRA simulation. An appropriate fraction of thermally stable retained austenite obtained at 600oC was attributed to the extent of partitioning of C, Ni, and Mn into the reversed austenite, which contributed to the best balance of strength-ductility-toughness properties. After direct quenching and tempering at 600oC, high yield strength of 1030 MPa with a high ductility of 18%, low yield to tensile ratio of 0.93, and excellent low-temperature toughness of 160 J at -80oC were obtained.

Key wordslow carbon alloyed steel    tempering temperature    low-temperature toughness    microstructure
收稿日期: 2021-04-07     
ZTFLH:  TG142.1  
基金资助:辽宁省科技重大专项项目(2020JH1/10100001);海洋装备用金属材料及其应用国家重点实验室开放课题项目
作者简介: 周 成,男,1985年生,博士生
图1  NiCrMoV低碳合金钢的轧制工艺和热处理制度示意图
图 2  NiCrMoV低碳合金钢在直接淬火(DQ)和不同温度回火状态下显微组织的SEM像
图3  NiCrMoV低碳合金钢在不同温度回火后显微组织的TEM像
图4  NiCrMoV低碳合金钢在不同温度回火后的XRD谱及残余奥氏体体积分数
图5  NiCrMoV低碳合金钢在600和650℃回火后残余奥氏体的EBSD像
图6  NiCrMoV低碳合金钢在DQ态和不同温度回火状态下的拉伸性能
图7  不同温度回火的NiCrMoV低碳合金钢在-80℃的冲击功及与其他低碳合金钢[6,8,17~19]屈服强度的比较
图8  不同温度回火的NiCrMoV低碳合金钢冲击断口形貌的SEM像
图 9  NiCrMoV低碳合金钢在600和650℃回火过程中的膨胀曲线
图10  利用DICTRA模拟NiCrMoV低碳合金钢在两相区回火过程中合金元素配分过程
图 11  NiCrMoV低碳合金钢在500℃回火时析出相的TEM像及其对应的EDS
图12  600℃回火NiCrMoV低碳合金钢在冲击实验前后的XRD谱
1 Klemm-Toole J, Benz J, Thompson S W, et al. A quantitative evaluation of microalloy precipitation strengthening in martensite and bainite [J]. Mater. Sci. Eng., 2019, A763: 138145
2 Zhang G H, Cheng L, Li Y, et al. Progress on marine corrosion resistant steels [J]. Mater. China, 2014, 33: 426
2 张国宏, 成林, 李钰 等. 海洋耐蚀钢的国内外进展 [J]. 中国材料进展, 2014, 33: 426
3 Abdollah-Zadeh A, Belbasy M. Effects of Mn and Cu on the mechanical properties of a high strength low alloy NiCrMoV steel [J]. J. Mater. Sci. Technol., 2005, 21: 470
4 Salemi A, Abdollah-Zadeh A. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel [J]. Mater. Charact., 2008, 59: 484
doi: 10.1016/j.matchar.2007.02.012
5 Lu J, Yu H, Yang S F. Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution [J]. Mater. Sci. Eng., 2021, A803: 140493
6 Zhang X J. Microhardness characterisation in developing high strength, high toughness and superior ballistic resistance low carbon Ni steel [J]. Mater. Sci. Technol., 2012, 28: 818
doi: 10.1179/1743284712Y.0000000015
7 Chen Q Y, Ren J K, Xie Z L, et al. Correlation between reversed austenite and mechanical properties in a low Ni steel treated by ultra-fast cooling, intercritical quenching and tempering [J]. J. Mater. Sci., 2020, 55: 1840
doi: 10.1007/s10853-019-04029-y
8 Dhua S K, Mukerjee D, Sarma D S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metall. Mater. Trans., 2001, 32A: 2259
9 Hou W, Liu Q D, Gu J F. Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7 Ni steel [J]. Mater. Sci. Eng., 2020, A780: 139186
10 Liu D S, Cheng B G, Chen Y Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans., 2013, 44A: 440
11 Otani K, Muraoka H, Tsuruta S, et al. Development of ultraheavy-gauge (210 mm thick) 800 N/mm2 tensile strength plate steel for racks of jack-up rigs [J]. Nippon Steel Tech. Rep., 1993, 58: 1
12 Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J]. Mater. Sci. Eng., 2001, A318: 197
13 Kim J I, Morris J W. The composition of precipitated austenite in 5.5Ni steel [J]. Metall. Mater. Trans., 1981, 12A: 1957
14 Saastamoinen A, Kaijalainen A, Nyo T T, et al. Direct-quenched and tempered low-C high-strength structural steel: The role of chemical composition on microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A760: 346
15 Xie Z J, Shang C J, Wang X L, et al. Microstructure-property relationship in a low carbon Nb-B bearing ultra-high strength steel by direct-quenching and tempering [J]. Mater. Sci. Eng., 2018, A727: 200
16 Hu J, Du L X, Dong Y, et al. Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel [J]. Mater. Charact., 2019, 152: 21
doi: 10.1016/j.matchar.2019.04.004
17 Jain D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides [J]. Metall. Mater. Trans., 2016, 47A: 3860
18 Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, A707: 270
19 Wang M, Liu Z Y, Li C G. Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels [J]. Acta Metall. Sin. (Engl. Lett.)., 2017, 30: 238
doi: 10.1007/s40195-016-0496-9
20 Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel [J]. Acta Mater., 2015, 86: 182
doi: 10.1016/j.actamat.2014.12.021
21 Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
22 Zou Y, Xu Y B, Wang G, et al. Improved strength-ductility-toughness balance of a precipitation-strengthened low-carbon medium-Mn steel by adopting intercritical annealing-tempering process [J]. Mater. Sci. Eng., 2021, A802: 140636
23 Wang D C, Cai Q W, Yu W, et al. Tempering microstructure and mechanical properties of an ultra high strength bainitic steel [J]. Trans. Mater. Heat Treat., 2013, 34(5): 143
23 万德成, 蔡庆伍, 余伟 等. 超高强贝氏体钢的回火组织与力学性能 [J]. 材料热处理学报, 2013, 34(5): 143
24 Srivatsa K, Srinivas P, Balachandran G, et al. Room temperature microstructure and property evaluation of a heat treated fully bainitic 20CrMoVTiB410 steel [J]. JOM, 2016, 68: 2704
doi: 10.1007/s11837-016-2063-2
25 Lee S, De Cooman B C. Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel [J]. Metall. Mater. Trans., 2014, 45A: 6039
26 Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
27 Han J B, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
28 Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing [J]. Mater. Sci. Eng., 2011, A528: 6661
29 Wang Z H, Hui W J, Xie Z Q, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel [J]. Acta Metall. Sin., 2020, 56: 1441
doi: 10.11900/0412.1961.2020.00139
29 王占花, 惠卫军, 谢志奇 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响 [J]. 金属学报, 2020, 56: 1441
doi: 10.11900/0412.1961.2020.00139
30 Li Z J, Xiao N M, Li D Z, et al. Influence of microstructure on impact toughness of G18CrMo2-6 steel during tempering [J]. Acta Metall. Sin., 2014, 50: 777
doi: 10.3724/SP.J.1037.2013.00747
30 李振江, 肖纳敏, 李殿中 等. G18CrMo2-6钢回火组织及冲击韧性研究 [J]. 金属学报, 2014, 50: 777
doi: 10.3724/SP.J.1037.2013.00747
31 Yan P, Liu Z D, Bao H S, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Des., 2014, 54: 874
doi: 10.1016/j.matdes.2013.09.017
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.