Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1568-1580    DOI: 10.11900/0412.1961.2022.00193
  本期目录 | 过刊浏览 |
纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化
苏震奇1,2, 张丛江1,2, 袁笑坦1,2, 胡兴金1,2, 芦可可1,2, 任维丽1,2(), 丁彪1,2(), 郑天祥1,2, 沈喆1,2, 钟云波1,2, 王晖3, 王秋良3
1上海大学 材料科学与工程学院 上海 200444
2上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
3中国科学院电工研究所 北京 100190
Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field
SU Zhenqi1,2, ZHANG Congjiang1,2, YUAN Xiaotan1,2, HU Xingjin1,2, LU Keke1,2, REN Weili1,2(), DING Biao1,2(), ZHENG Tianxiang1,2, SHEN Zhe1,2, ZHONG Yunbo1,2, WANG Hui3, WANG Qiuliang3
1School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
3Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
Zhenqi SU, Congjiang ZHANG, Xiaotan YUAN, Xingjin HU, Keke LU, Weili REN, Biao DING, Tianxiang ZHENG, Zhe SHEN, Yunbo ZHONG, Hui WANG, Qiuliang WANG. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. Acta Metall Sin, 2023, 59(12): 1568-1580.

全文: PDF(4296 KB)   HTML
摘要: 

通过对单晶高温合金定向凝固生长过程中显微组织的考察,研究了磁场下杂晶在籽晶回熔区附近的产生及其在生长过程中的演变机制。磁场使得定向凝固籽晶重熔区界面上出现大取向杂晶和大角度晶界,其多分布于样品边缘,磁场强度和抽拉速率的增大均增加了杂晶数量和大角度晶界长度。凝固起始阶段形成的大取向杂晶和大角度晶界以较快速率被淘汰,演化成小取向枝晶和小角度晶界;随着凝固继续进行,枝晶取向和晶界角度进一步减小,但是演化速率急剧降低,拉速的增大强化了此演变过程。重熔区界面上杂晶的形成是由于热电磁力对枝晶的扭断,而宏观尺度上的热电磁环流在凝固过程挟制着扭断碎晶,使得碎晶演化成较多分布于样品边缘的杂晶。

关键词 单晶高温合金纵向静磁场定向凝固杂晶    
Abstract

Nickel-based superalloys, especially single-crystal (SC) ones, have long been recognized as important materials for turbine blades used in aerospace and gas engines. Static magnetic fields are effective at controlling the material forming. The use of static magnetic fields during solidification has evolved as a sophisticated approach for efficiently controlling the microstructures and mechanical performance of metallic materials. In recent years, studies have shown that static magnetic fields have a complex effect on dendrites in SC superalloys. However, the mechanism of static magnetic fields regulating stray grains on remelted interface needs to be investigated further. This work studied the generation of stray grains near the seed remelted zone and the evolution mechanism during the directional solidification of the SC superalloy assisted by a magnetic field by tracing the solidification microstructure. The stray grains of large orientation that deviated from the <001> direction appeared on the remelted zone interface of the solidification microstructure when the magnetic field was applied, accompanied by the formation of a large-angle grain boundary (LAGB). Most of the stray grains were distributed at the sample edge. The increase in magnetic field intensity and pulling speed increased the number of stray grains and the length of the LAGB. As the solidification progressed, the large-orientation stray grains and the LAGBs were eliminated at a fast speed and evolved into small-orientation dendrites. During the following solidification, the orientation of the dendrites became even smaller and the evolution speed decreased sharply. The increase in withdrawal speed intensified the evolution process. The stray grains formed in the remelted zone can be attributed to the twisting dendrite by the thermoelectric magnetic force. The distribution of more stray grains around the sample was caused by the circulation from thermoelectric magnetic convection at the macroscopic scale.

Key wordssingle-crystal superalloy    vertical static magnetic field    directional solidification    stray grain
收稿日期: 2022-04-24     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51871142);省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室自主研发项目(SKLASS 2021-Z08);上海市科学技术委员会项目(19DZ2270200)
通讯作者: 任维丽,wlren@staff.shu.edu.cn,主要从事磁场下高温合金定向凝固、高温合金性能的研究;
丁 彪,dingbiao312@126.com,主要从事高温合金蠕变疲劳研究
作者简介: 苏震奇,男,1994年生,硕士生
图1  籽晶法定向凝固单晶高温合金样品及其显微组织
图2  抽拉速率为20 μm/s时,不同磁场强度下合金经定向凝固后在不同凝固长度处横截面的宏观形貌
图3  抽拉速率为20 μm/s时,不同磁场强度下合金经定向凝固后在不同凝固长度处EBSD反极图
图4  不同凝固距离处枝晶最大取向及枝晶取向偏离<001>角度大于20°的比例
图5  磁场下各凝固距离处不同角度范围段的晶界长度
图6  0.5 T磁场强度下不同抽拉速率时合金经定向凝固后在不同凝固长度处横截面宏观形貌
图7  0.5 T磁场强度下不同抽拉速率时合金经定向凝固后在不同凝固长度处横截面EBSD反极图
图8  0.5 T磁场不同抽拉速率下合金在各位置处不同角度的晶界长度
图9  0.5 T磁场强度下淬火界面形貌
图10  计算域和其网格划分:包括液相、固相和胞状液/固界面的计算域及其横截面
图11  不同磁场强度下胞晶液/固界面附近热电流与热电磁力分布
图12  不同磁场强度下样品熔体内流场结构
图13  偏离<001>方向不同角度的双晶竞争生长示意图
图14  反常淘汰的汇聚型双晶模型中枝晶前沿溶质富集层相互作用示意图
1 Guo J T. The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metall. Sin., 2010, 46: 513
doi: 10.3724/SP.J.1037.2009.00860
1 郭建亭. 高温合金在能源工业领域中的应用现状与发展[J]. 金属学报, 2010, 46: 513
doi: 10.3724/SP.J.1037.2009.00860
2 Ma D X. Development of single crystal solidification technology for production of superalloy turbine blades[J]. Acta Metall. Sin., 2015, 51: 1179
2 马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51: 1179
3 Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys[J]. Mater. China, 2012, 31(12): 1
3 孙晓峰, 金 涛, 周亦胄 等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1
4 Zhang J, Huang T W, Liu L, et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1163
doi: 10.11900/0412.1961.2015.00448
4 张 军, 黄太文, 刘 林 等. 单晶高温合金凝固特性与典型凝固缺陷研究[J]. 金属学报, 2015, 51: 1163
5 Ren N, Panwisawas C, Li J, et al. Solute enrichment induced dendritic fragmentation in directional solidification of nickel-based superalloys[J]. Acta Mater., 2021, 215: 117043
doi: 10.1016/j.actamat.2021.117043
6 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metall. Sin., 2019, 55: 1077
6 张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55: 1077
7 D'Souza N, Newell M, Devendra K, et al. Formation of low angle boundaries in Ni-based superalloys[J]. Mater. Sci. Eng., 2005, A413-414: 567
8 Zhou Y Z. Formation of stray grains during directional solidification of a nickel-based superalloy[J]. Scr. Mater., 2011, 65: 281
doi: 10.1016/j.scriptamat.2011.04.023
9 Yang X L, Dong H B, Wang W, et al. Microscale simulation of stray grain formation in investment cast turbine blades[J]. Mater. Sci. Eng., 2004, A386: 129
10 Meng X B, Lu Q, Li J G, et al. Modes of grain selection in spiral selector during directional solidification of nickel-base superalloys[J]. J. Mater. Sci. Technol., 2012, 28: 214
doi: 10.1016/S1005-0302(12)60044-9
11 Li Y F, Liu L, Huang T W, et al. The process analysis of seeding-grain selection and its effect on stray grain and orientation control[J]. J. Alloys Compd., 2016, 657: 341
doi: 10.1016/j.jallcom.2015.09.249
12 Hu S S, Yang W C, Li Z R, et al. Formation mechanisms and control method for stray grains at melt-back region of Ni-based single crystal seed[J]. Prog. Nat. Sci., 2021, 31: 624
doi: 10.1016/j.pnsc.2021.07.004
13 Hallensleben P, Schaar H, Thome P, et al. On the evolution of cast microstructures during processing of single crystal Ni-base superalloys using a Bridgman seed technique[J]. Mater. Des., 2017, 128: 98
doi: 10.1016/j.matdes.2017.05.001
14 Zhang T, Ren W L, Dong J W, et al. Effect of high magnetic field on the primary dendrite arm spacing and segregation of directionally solidified superalloy DZ417G[J]. J. Alloys Compd., 2009, 487: 612
doi: 10.1016/j.jallcom.2009.08.025
15 Dong J W, Ren Z M, Ren W L, et al. Effect of horizontal magnetic field on the microstructure of directionally solidified Ni-based superalloy[J]. Acta Metall. Sin., 2010, 46: 71
15 董建文, 任忠鸣, 任维丽 等. 横向磁场对镍基高温合金定向凝固组织的影响[J]. 金属学报, 2010, 46: 71
16 Ren W L, Lu L, Yuan G Z, et al. The effect of magnetic field on precipitation phases of single-crystal nickel-base superalloy during directional solidification[J]. Mater. Lett., 2013, 100: 223
doi: 10.1016/j.matlet.2013.03.023
17 Xuan W D, Song G, Duan F M, et al. Enhanced creep properties of nickel-base single crystal superalloy CMSX-4 by high magnetic field[J]. Mater. Sci. Eng., 2021, A803: 140729
18 Li Q D, Shen J, Qin L, et al. Effect of traveling magnetic field on freckle formation in directionally solidified CMSX-4 superalloy[J]. Mater. Process. Technol., 2019, 274: 116308
doi: 10.1016/j.jmatprotec.2019.116308
19 Xuan W D, Ren Z M, Li C J. Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J]. J. Alloys Compd., 2015, 620: 10
doi: 10.1016/j.jallcom.2014.09.114
20 Zhang K L, Li Y J, Yang Y S. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169[J]. J. Mater. Sci. Technol., 2020, 48: 9
doi: 10.1016/j.jmst.2020.02.009
21 Ren W L, Niu C L, Ding B, et al. Improvement in creep life of a nickel-based single-crystal superalloy via composition homogeneity on the multiscales by magnetic-field-assisted directional solidification[J]. Sci. Rep., 2018, 8: 1452
doi: 10.1038/s41598-018-19800-5 pmid: 29362394
22 Xuan W D, Liu H, Lan J, et al. Effect of a transverse magnetic field on stray grain formation of Ni-based single crystal superalloy during directional solidification[J]. Metall. Mater. Trans., 2016, 47B: 3231
23 Xuan W D, Liu H, Li C J, et al. Effect of a high magnetic field on microstructures of Ni-based single crystal superalloy during seed melt-back[J]. Metall. Mater. Trans., 2016, 47B: 828
24 Xuan W D, Lan J, Liu H, et al. Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification[J]. Metall. Mater. Trans., 2017, 48A: 3804
25 Yuan X T, Zhou T, Ren W L, et al. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of nickel-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2021, 62: 52
doi: 10.1016/j.jmst.2020.05.059
26 Liu C L, Su H J, Zhang J, et al. Effect of electromagnetic field on microstructure of Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2018, 54: 1428
26 刘承林, 苏海军, 张 军 等. 电磁场对镍基单晶高温合金组织的影响[J]. 金属学报, 2018, 54: 1428
doi: 10.11900/0412.1961.2017.00539
27 Li Y J, Teng Y F, Feng X H, et al. Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2017, 33: 105
doi: 10.1016/j.jmst.2015.12.021
28 Niu C L, Ren W L, Ding B, et al. The change of mushy-zone length of a nickel-based single-crystal superalloy during the static-magnetic-field-assisted directional solidification[J]. Cryst. Res. Technol., 2018, 53: 1700187
doi: 10.1002/crat.v53.6
29 Liu Q. EBSD technique and its applications in materials science[J]. Chin. J. Stereol. Image Anal., 2005, 10: 205
29 刘 庆. 电子背散射衍射技术及其在材料科学中的应用[J]. 中国体视学与图像分析, 2005, 10: 205
30 Xu W L, Wang F, Ma D X, et al. Sliver defect formation in single crystal Ni-based superalloy castings[J]. Mater. Des., 2020, 196: 109138
doi: 10.1016/j.matdes.2020.109138
31 Ren Z M, Lei Z S, Li C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metall. Sin., 2020, 56: 583
doi: 10.11900/0412.1961.2019.00373
31 任忠鸣, 雷作胜, 李传军 等. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56: 583
doi: 10.11900/0412.1961.2019.00373
32 Wang J, Fautrelle Y, Ren Z M, et al. Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field[J]. Appl. Phys. Lett., 2012, 101: 251904
doi: 10.1063/1.4772510
33 Dahle A K, Arnberg L. Development of strength in solidifying aluminium alloys[J]. Acta Mater., 1997, 45: 547
doi: 10.1016/S1359-6454(96)00203-0
34 Khine Y Y, Walker J S. Thermoelectric magnetohydrodynamic effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field[J]. J. Cryst. Growth, 1998, 183: 150
doi: 10.1016/S0022-0248(97)00394-1
35 Ma D X. Freckle formation during directional solidification of complex castings of superalloys[J]. Acta Metall. Sin., 2016, 52: 426
35 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成[J]. 金属学报, 2016, 52: 426
doi: 10.11900/0412.1961.2015.00379
36 Walton D, Chalmers B. The origin of the preferred orientation in the columnar zone of ingots[J]. Trans. Am. Inst. Min. Metall. Eng., 1959, 215: 447
37 Zhou Y Z, Volek A, Green N R. Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy[J]. Acta Mater., 2008, 56: 2631
doi: 10.1016/j.actamat.2008.02.022
38 Hu S S, Liu L, Cui Q W, et al. Converging competitive growth in bi-crystal of Ni-based superalloy during directional solidification[J]. Acta. Metall. Sin., 2016, 52: 897
38 胡松松, 刘 林, 崔强伟 等. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长[J]. 金属学报, 2016, 52: 897
doi: 10.11900/0412.1961.2015.00631
39 Guo C W, Takaki T, Sakane S, et al. Overgrowth behavior at converging grain boundaries during competitive grain growth: A two-dimensional phase-field study[J]. Int. J. Heat Mass Transfer, 2020, 160: 120196
doi: 10.1016/j.ijheatmasstransfer.2020.120196
40 Zhou Y Z, Jin T, Sun X F. Structure evolution in directionally solidified bicrystals of nickel base superalloys[J]. Acta Metall. Sin., 2010, 46: 1327
doi: 10.3724/SP.J.1037.2010.01327
40 周亦胄, 金 涛, 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化[J]. 金属学报, 2010, 46: 1327
doi: 10.3724/SP.J.1037.2010.00280
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[7] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[11] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[12] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[13] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[14] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.