|
|
热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响 |
朱东明1, 何江里2,3, 史根豪2,3, 王青峰2,3( ) |
1.中铁九桥工程有限公司 九江 332004 2.燕山大学 材料科学与工程学院 秦皇岛 066004 3.燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004 |
|
Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel |
ZHU Dongming1, HE Jiangli2,3, SHI Genhao2,3, WANG Qingfeng2,3( ) |
1.China Railway Jiujiang Bridge Engineering Co., Ltd., Jiujiang 332004, China 2.College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China 3.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China |
引用本文:
朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
Dongming ZHU,
Jiangli HE,
Genhao SHI,
Qingfeng WANG.
Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. Acta Metall Sin, 2022, 58(12): 1581-1588.
1 |
Editorial Department of China Journal of Highway. Review on China's bridge engineering research: 2021 [J]. China J. Highway Transp., 2021, 34(2): 1
|
1 |
《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021 [J]. 中国公路学报, 2021, 34(2): 1
doi: 10.19721/j.cnki.1001-7372.2021.02.001
|
2 |
Fan Y. Study on controlling of mechanical and corrostion-resistance proeperties OFQ500EHPS steel for bridge [D]. Qinhuangdao: Yanshan University, 2017
|
2 |
范益. Q500EHPS桥梁钢力学性能和耐蚀性能的调控研究 [D]. 秦皇岛: 燕山大学, 2017
|
3 |
Huang H Q, Che P, Pei X F, et al. Development status and prospects of welding technology for bridge steel structures in my country [J]. Weld Technol., 2019, 48(suppl.2) : 60
|
3 |
黄会强, 车平, 裴雪峰 等. 我国桥梁钢结构焊接技术发展现状及展望 [J]. 焊接技术, 2019, 48(): 60
|
4 |
Hu X P, Wen D H, Li Z G. Development of high performance steel used for bridge [J]. Heat Process. Technol., 2008, 37(22): 91
|
4 |
胡晓萍, 温东辉, 李自刚. 高性能桥梁用钢的发展 [J]. 热加工工艺, 2008, 37(22): 91
|
5 |
Yan Z G, Zhao X X, Xu X J. Study on applicability of Q500qE steel for Hutong Yangtze River Bridge [J]. China Railw. Sci., 2017, 38(3): 40
|
5 |
闫志刚, 赵欣欣, 徐向军. 沪通长江大桥Q500qE钢的适用性研究 [J]. 中国铁道科学, 2017, 38(3): 40
|
6 |
Li Y G, Zhu X H, Liu Z G, et al. Experimental study of welding technique for Q500qE steel used to Tianshenggang Navigational Channel Bridge of Hutong Changjiang River Bridge [J]. World Bridge, 2018, 46(1): 61
|
6 |
李彦国, 朱新华, 刘志刚 等. 沪通长江大桥天生港专用航道桥Q500qE钢焊接工艺试验研究 [J]. 世界桥梁, 2018, 46(1): 61
|
7 |
Gao J, Qu W S, Zhou K G. Research and development of high-performance weather-resistant wide and heavy steel plate Q50QqENH with rare earth for bridge [J]. Baogang Technol., 2020, 46(3): 39
|
7 |
高军, 屈文胜, 周可哥. 稀土高性能耐候桥梁宽厚钢板Q500qENH研发 [J]. 包钢科技, 2020, 46(3): 39
|
8 |
Bei Y C, Xu X J. Study on weldability experimental for high performance Q500qE steel [J]. Met. Process. (Hot Work.), 2018, (12): 42
|
8 |
贝玉成, 徐向军. 高性能Q500qE钢焊接性试验研究 [J]. 金属加工(热加工), 2018, (12): 42
|
9 |
Chen J X, Ren X L, He X, et al. Development of submerged arc welding wire for new high performances bridge steel Q500qE [J]. Weld. Technol., 2018, 47(3): 66
|
9 |
陈建雄, 任希乐, 何秀 等. 新型高性能桥梁钢Q500qE用埋弧焊丝的研制 [J]. 焊接技术, 2018, 47(3): 66
|
10 |
Ma K, Zhao L P, He S Q, et al. The development of YSF105Q agglomerated flux for submerged welding of Q500qE high strength bridge steel [J]. Mach. Manuf. Dig. (Weld. Book), 2018, (2): 35
|
10 |
马昆, 赵利鹏, 何少卿 等. Q500qE高强度桥梁钢埋弧焊用YSF105Q烧结焊剂的研制 [J]. 机械制造文摘(焊接分册), 2018, (2): 35
|
11 |
Shi Y W, Han Z X. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel [J]. J. Mater. Process. Technol., 2008, 207: 30
doi: 10.1016/j.jmatprotec.2007.12.049
|
12 |
Xu W W, Wang Q F, Pan T, et al. Effect of welding heat input on simulated HAZ microstructure and toughness of a V-N microalloyed steel [J]. J. Iron Steel Res. Int., 2007, 14(5 suppl.1) : 234
|
13 |
Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
|
13 |
李学达, 尚成嘉, 韩昌柴 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
doi: 10.11900/0412.1961.2015.00610
|
14 |
Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel [J]. Acta Metall. Sin., 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
|
14 |
彭云, 宋亮, 赵琳 等. 先进钢铁材料焊接性研究进展 [J]. 金属学报, 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
|
15 |
Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A529: 192
|
16 |
Hu J, Du L X, Wang J J, et al. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel [J]. Mater. Sci. Eng., 2013, A577: 161
|
17 |
Cui J J, Zhu W T, Chen Z Y, et al. Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel [J]. Sci. Technol. Weld. Join., 2019, 25: 169
doi: 10.1080/13621718.2019.1661116
|
18 |
Zhou P S, Wang B, Wang L, et al. Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel [J]. Mater. Sci. Eng., 2018, A722: 112
|
19 |
Yang Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Des., 2013, 43: 485
doi: 10.1016/j.matdes.2012.07.015
|
20 |
Chen H D, Zhang S J, Liu D S. Phase transformation and joint properties of bridge steel plate Q500qE welding coarse grain zone [J]. Trans. Chin. Weld. Soc., 2017, 38(7): 123
|
20 |
陈焕德, 张淑娟, 刘东升. 桥梁钢板Q500qE焊接粗晶区相变及接头性能 [J]. 焊接学报, 2017, 38(7): 123
|
21 |
Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
doi: 10.1016/j.actamat.2004.01.025
|
22 |
Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. Trans. Iron Steel Inst. Jpn., 2005, 45: 91
|
23 |
Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
|
24 |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
|
25 |
Wang H B, Wang F L, Shi G H, et al. Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel [J]. J. Iron Steel Res. Int., 2019, 26: 637
doi: 10.1007/s42243-019-00271-5
|
26 |
Nohava J, Haušild P, Karlı́K M, et al. Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel [J]. Mater. Charact., 2002, 49: 211
doi: 10.1016/S1044-5803(02)00360-1
|
27 |
Yang Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content [J]. Mater. Sci. Eng., 2012, A558: 692
|
28 |
Zhang C Y, Wang Q F, Ren J X, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel [J]. Mater. Sci. Eng., 2012, A534: 339
|
29 |
Daigne J, Guttmann M, Naylor J P. The influence of lath boundaries and carbide distribution on the yield strength of 0.4%C tempered martensitic steels [J]. Mater. Sci. Eng., 1982, 56: 1
|
30 |
Terasaki H, Shintome Y, Takada A, et al. Visualization and analysis of variant grouping in continuously cooled low-carbon steel welds [J]. Metall. Mater. Trans., 2014, 45A: 3554
|
31 |
Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V microalloyed steel [J]. Mater. Sci. Eng., 2011, A528: 2559
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|