Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1581-1588    DOI: 10.11900/0412.1961.2021.00175
  研究论文 本期目录 | 过刊浏览 |
热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响
朱东明1, 何江里2,3, 史根豪2,3, 王青峰2,3()
1.中铁九桥工程有限公司 九江 332004
2.燕山大学 材料科学与工程学院 秦皇岛 066004
3.燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel
ZHU Dongming1, HE Jiangli2,3, SHI Genhao2,3, WANG Qingfeng2,3()
1.China Railway Jiujiang Bridge Engineering Co., Ltd., Jiujiang 332004, China
2.College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
3.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
引用本文:

朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
Dongming ZHU, Jiangli HE, Genhao SHI, Qingfeng WANG. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. Acta Metall Sin, 2022, 58(12): 1581-1588.

全文: PDF(3999 KB)   HTML
摘要: 

采用Gleeble-3500热模拟试验机模拟了Q500qE钢在不同热输入(Ej = 15~30 kJ/cm)下的焊接热循环过程,结合OM、SEM以及EBSD等手段探讨了热输入对粗晶热影响区(CGHAZ)微观组织和冲击韧性的影响规律及其作用机理。结果表明,随着焊接热输入的降低,板条贝氏体(LB)增多,粒状贝氏体(GB)减少,相变温度Ar3降低,贝氏体块(packet)和贝氏体束(block)明显细化;CGHAZ的冲击功KV2 (-40℃)随着热输入的降低而提高,冲击断口均表现出明显的解理断裂特征,其解理面尺寸Df随着热输入的降低而减小;贝氏体packet是Q500qE钢中控制CGHAZ冲击韧性最有效的结构单元。

关键词 Q500qE钢CGHAZ焊接热模拟冲击韧性贝氏体    
Abstract

As China's economy enters a stage of high-quality development, it is important to study high-performance bridge steels with high strength, high toughness, high efficiency, and easy welding. Presently, coarse-grained heat-affected zones (CGHAZs) of high-performance bridge steels are prone to coarse-grain embrittlement, which reduces its impact toughness. To improve their low-temperature toughness, the relationship between their microstructure and impact toughness has been extensively researched and discussed. However, the control connection and internal mechanism between the bainite microstructure and impact toughness have not been clarified. In this study, the simulated samples of CGHAZs in Q500qE steel with varying heat inputs, from 15 to 30 kJ/cm, were reproduced in Gleeble 3500 thermal simulation-testing machine. The effect of different heat inputs on the microstructure, impact toughness of CGHAZs, and their inherent mechanism was discussed and analyzed in-depth using OM, SEM, and EBSD. The results indicate that the microstructure of each simulated sample of CGHAZs in Q500qE steel was composed of lath-like bainite (LB) and granular-like bainite (GB). The LB increased, the GB reduced, phase-transition temperature (Ar3) declined, and the bainitic packet/block substructure refined as the welding heat input decreased. In addition, with the decreased heat inputs, the Charpy impact energy (KV2) at -40oC of CGHAZs is enhanced because of the refined microstructure. The impact fracture of all samples showed cleavage fracture characteristics, and the cleavage face size of the simulated samples of CGHAZs decreased due to the reduced heat inputs. Compared with prior austenite grain boundary and bainite block, the bainite packet is the most effective microstructural unit for controlling the impact toughness of CGHAZs in Q500qE steel, and its boundary effectively facilitates the prevention of further propagation of a secondary crack.

Key wordsQ500qE steel    CGHAZ    welding thermal simulation    impact toughness    bainite
收稿日期: 2021-04-26     
ZTFLH:  TG401  
基金资助:国家自然科学基金项目(51671165)
作者简介: 朱东明,男,1977年生,正高级工程师
图1  Q500qE钢板的原始组织
图2  不同热输入下粗晶热影响区(CGHAZ)的焊接热循环曲线
图3  不同热输入下CGHAZ显微组织的OM像
图4  不同热输入下CGHAZ的典型SEM像
Ej / (kJ·cm-1)MicrostructureDγ / μmDP / μmWB / μmDf / μm
1592%LB + 8%GB41.2 ± 418.9 ± 24.0 ± 0.515 ± 2
2084%LB + 16%GB68.7 ± 548.2 ± 54.5 ± 0.528 ± 2
2578%LB + 22%GB81.7 ± 864.3 ± 65.2 ± 0.632 ± 3
3071%LB + 29%GB99.3 ± 978.8 ± 85.6 ± 0.737 ± 3
表1  不同热输入下CGHAZ的微结构尺寸测量结果和解理面尺寸统计
图5  不同热输入下CGHAZ的EBSD像
图6  不同热输入下CGHAZ的Charpy冲击功
图7  不同热输入下CGHAZ的冲击断口形貌
图8  典型热输入下CGHAZ的二次裂纹形貌
图9  不同热输入下CGHAZ的热膨胀曲线以及对应的奥氏体向铁素体转变开始温度
图10  解理面尺寸与PAG尺寸、贝氏体packet尺寸和block宽度的拟合关系
1 Editorial Department of China Journal of Highway. Review on China's bridge engineering research: 2021 [J]. China J. Highway Transp., 2021, 34(2): 1
1 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021 [J]. 中国公路学报, 2021, 34(2): 1
doi: 10.19721/j.cnki.1001-7372.2021.02.001
2 Fan Y. Study on controlling of mechanical and corrostion-resistance proeperties OFQ500EHPS steel for bridge [D]. Qinhuangdao: Yanshan University, 2017
2 范益. Q500EHPS桥梁钢力学性能和耐蚀性能的调控研究 [D]. 秦皇岛: 燕山大学, 2017
3 Huang H Q, Che P, Pei X F, et al. Development status and prospects of welding technology for bridge steel structures in my country [J]. Weld Technol., 2019, 48(suppl.2) : 60
3 黄会强, 车平, 裴雪峰 等. 我国桥梁钢结构焊接技术发展现状及展望 [J]. 焊接技术, 2019, 48(): 60
4 Hu X P, Wen D H, Li Z G. Development of high performance steel used for bridge [J]. Heat Process. Technol., 2008, 37(22): 91
4 胡晓萍, 温东辉, 李自刚. 高性能桥梁用钢的发展 [J]. 热加工工艺, 2008, 37(22): 91
5 Yan Z G, Zhao X X, Xu X J. Study on applicability of Q500qE steel for Hutong Yangtze River Bridge [J]. China Railw. Sci., 2017, 38(3): 40
5 闫志刚, 赵欣欣, 徐向军. 沪通长江大桥Q500qE钢的适用性研究 [J]. 中国铁道科学, 2017, 38(3): 40
6 Li Y G, Zhu X H, Liu Z G, et al. Experimental study of welding technique for Q500qE steel used to Tianshenggang Navigational Channel Bridge of Hutong Changjiang River Bridge [J]. World Bridge, 2018, 46(1): 61
6 李彦国, 朱新华, 刘志刚 等. 沪通长江大桥天生港专用航道桥Q500qE钢焊接工艺试验研究 [J]. 世界桥梁, 2018, 46(1): 61
7 Gao J, Qu W S, Zhou K G. Research and development of high-performance weather-resistant wide and heavy steel plate Q50QqENH with rare earth for bridge [J]. Baogang Technol., 2020, 46(3): 39
7 高军, 屈文胜, 周可哥. 稀土高性能耐候桥梁宽厚钢板Q500qENH研发 [J]. 包钢科技, 2020, 46(3): 39
8 Bei Y C, Xu X J. Study on weldability experimental for high performance Q500qE steel [J]. Met. Process. (Hot Work.), 2018, (12): 42
8 贝玉成, 徐向军. 高性能Q500qE钢焊接性试验研究 [J]. 金属加工(热加工), 2018, (12): 42
9 Chen J X, Ren X L, He X, et al. Development of submerged arc welding wire for new high performances bridge steel Q500qE [J]. Weld. Technol., 2018, 47(3): 66
9 陈建雄, 任希乐, 何秀 等. 新型高性能桥梁钢Q500qE用埋弧焊丝的研制 [J]. 焊接技术, 2018, 47(3): 66
10 Ma K, Zhao L P, He S Q, et al. The development of YSF105Q agglomerated flux for submerged welding of Q500qE high strength bridge steel [J]. Mach. Manuf. Dig. (Weld. Book), 2018, (2): 35
10 马昆, 赵利鹏, 何少卿 等. Q500qE高强度桥梁钢埋弧焊用YSF105Q烧结焊剂的研制 [J]. 机械制造文摘(焊接分册), 2018, (2): 35
11 Shi Y W, Han Z X. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel [J]. J. Mater. Process. Technol., 2008, 207: 30
doi: 10.1016/j.jmatprotec.2007.12.049
12 Xu W W, Wang Q F, Pan T, et al. Effect of welding heat input on simulated HAZ microstructure and toughness of a V-N microalloyed steel [J]. J. Iron Steel Res. Int., 2007, 14(5 suppl.1) : 234
13 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
13 李学达, 尚成嘉, 韩昌柴 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
doi: 10.11900/0412.1961.2015.00610
14 Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel [J]. Acta Metall. Sin., 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
14 彭云, 宋亮, 赵琳 等. 先进钢铁材料焊接性研究进展 [J]. 金属学报, 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
15 Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A529: 192
16 Hu J, Du L X, Wang J J, et al. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel [J]. Mater. Sci. Eng., 2013, A577: 161
17 Cui J J, Zhu W T, Chen Z Y, et al. Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel [J]. Sci. Technol. Weld. Join., 2019, 25: 169
doi: 10.1080/13621718.2019.1661116
18 Zhou P S, Wang B, Wang L, et al. Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel [J]. Mater. Sci. Eng., 2018, A722: 112
19 Yang Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Des., 2013, 43: 485
doi: 10.1016/j.matdes.2012.07.015
20 Chen H D, Zhang S J, Liu D S. Phase transformation and joint properties of bridge steel plate Q500qE welding coarse grain zone [J]. Trans. Chin. Weld. Soc., 2017, 38(7): 123
20 陈焕德, 张淑娟, 刘东升. 桥梁钢板Q500qE焊接粗晶区相变及接头性能 [J]. 焊接学报, 2017, 38(7): 123
21 Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
doi: 10.1016/j.actamat.2004.01.025
22 Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. Trans. Iron Steel Inst. Jpn., 2005, 45: 91
23 Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
24 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
25 Wang H B, Wang F L, Shi G H, et al. Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel [J]. J. Iron Steel Res. Int., 2019, 26: 637
doi: 10.1007/s42243-019-00271-5
26 Nohava J, Haušild P, Karlı́K M, et al. Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel [J]. Mater. Charact., 2002, 49: 211
doi: 10.1016/S1044-5803(02)00360-1
27 Yang Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content [J]. Mater. Sci. Eng., 2012, A558: 692
28 Zhang C Y, Wang Q F, Ren J X, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel [J]. Mater. Sci. Eng., 2012, A534: 339
29 Daigne J, Guttmann M, Naylor J P. The influence of lath boundaries and carbide distribution on the yield strength of 0.4%C tempered martensitic steels [J]. Mater. Sci. Eng., 1982, 56: 1
30 Terasaki H, Shintome Y, Takada A, et al. Visualization and analysis of variant grouping in continuously cooled low-carbon steel welds [J]. Metall. Mater. Trans., 2014, 45A: 3554
31 Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V microalloyed steel [J]. Mater. Sci. Eng., 2011, A528: 2559
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[3] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[4] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[5] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[6] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[7] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[8] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[9] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[10] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[11] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[12] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[13] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[14] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[15] 邹宗园, 许小奎, 李银潇, 王超. 大热输入焊接用钢的焊接粗晶热影响区韧性提升方法研究[J]. 金属学报, 2017, 53(8): 957-967.