Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1141-1149    DOI: 10.11900/0412.1961.2021.00491
  研究论文 本期目录 | 过刊浏览 |
液氮温度下纯Ti动态塑性变形中的孪晶变体选择
高栋1, 周宇2(), 于泽3, 桑宝光1()
1.大连工业大学 机械工程与自动化学院 大连 116034
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中航沈飞股份有限公司 沈阳 110850
Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature
GAO Dong1, ZHOU Yu2(), YU Ze3, SANG Baoguang1()
1.School of Mechanical Engineering and Automation, Dalian Polytecnic University, Dalian 116034, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.AVIC Shenyang Aircraft Company Limited, Shenyang 110850, China
引用本文:

高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
Dong GAO, Yu ZHOU, Ze YU, Baoguang SANG. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. Acta Metall Sin, 2022, 58(9): 1141-1149.

全文: PDF(3114 KB)   HTML
摘要: 

在液氮温度下对商用纯Ti进行了动态塑性变形(DPD),利用电子背散射衍射(EBSD)技术观察变形前后微观组织的变化,分析孪生对变形前后Schmid因子(m)的影响,提出一种多晶纯Ti孪晶变体的选择机制。结果表明,经过液氮温度DPD后,纯Ti中出现高密度初级孪晶,并伴有二级孪晶和双孪晶;孪晶形成后,基面滑移的m发生明显改变,大量晶粒的m靠近0.5;在原有滑移和孪生匹配关系的几何相容因子(m')和相邻晶粒的Schmid因子(m1)基础上提出了新的参数取向相容因子ω (ω = m1·m')作为孪晶变体的选择依据,并定量分析了多晶纯Ti塑性变形过程中的孪晶变体。发现ω决定了多晶纯Ti孪晶变体的选择,同时发现相邻晶粒锥面<a>滑移在促进孪晶变体启动中起主要作用。

关键词 纯Ti微观组织几何相容因子取向相容因子孪晶变体    
Abstract

Pure Ti can form twins during deformation due to the hcp crystal structure, and some kinds of twins can easily form under certain conditions, thus affecting the properties of materials. It has considerable influence on the properties of materials through the regulation of twin types and variants. This work investigates the effect of the dislocation slip of adjacent grains on the selection of twin variants during the deformation of pure Ti. The dynamic plastic deformation (DPD) of commercially pure Ti (99.9%) was performed at liquid nitrogen temperature (-196oC). The microstructure before and after the deformation was observed using EBSD. The influence of twinning on Schmid factor (m) before and after deformation was investigated, and a mechanism for selecting twin variants of polycrystalline pure Ti was proposed. The results show that after DPD at liquid nitrogen temperature, high-density primary twins appeared in pure Ti, followed by secondary and double twins. After twinning, the Schmid factor of basal slip changed noticeably, and the m of a large number of grains was close to 0.5. Based on the geometric compatibility factor (m') of the original slip and twin matching relationship and the Schmid factor of an adjacent grain (m1), a new orientation compatibility factor ω (ω = m1·m') was established, and the selection of twin variants in the plastic deformation of polycrystalline pure titanium was quantitatively analyzed. It was discovered that the ω determines the selection of twin variants in pure Ti, and the pyramidal slip <a> of the adjacent grain plays a significant role in promoting the initiation of twin variants.

Key wordspure Ti    microstructure    geometric compatibility factor    orientation compatibility factor    twin variant
收稿日期: 2021-11-12     
ZTFLH:  TG146.23  
基金资助:辽宁省-沈阳材料科学国家研究中心联合研发基金项目(2019JH3/30100030);沈阳材料科学国家研究中心青年人才项目,以及辽宁省教育厅自然科学基础项目(J2020050)
作者简介: 周 宇, yzhou@imr.ac.cn,主要从事纳米金属材料的制备及力学化学性能研究
高 栋,男,1995年生,硕士生
图1  纯Ti样品取样示意图
图2  动态塑性变形(DPD)前后纯Ti的微观组织与孪晶分布
Type of twin

Misorientation angle

and axis

Frequency of twin

%

{ 101¯2}85° < 12¯10>7.87
{ 101¯1}57.2° < 12¯10>0.02
{ 112¯1}35° < 101¯0>0.15
{ 112¯2}64.4° < 101¯0>11.50
{ 112¯3}86.8° < 12¯10>0.50
{ 112¯4}77° < 12¯10>1.20
Total-21.24
表1  DPD后纯Ti中常见的6种孪晶占比
图3  液氮温度下DPD后纯Ti中不同类型孪晶的微观结构
图4  液氮温度下DPD后纯Ti的TEM像
Type of Burgers vectorSlip directionSlip planeTotal number of slip systemIndependent number of slip system
Basal <a>< 112¯0>{0002}32
Prismatic <a>< 112¯0>{ 101¯0}32
Pyramidal <a>< 112¯0>{ 101¯1}64
Pyramidal <c + a>< 1¯1¯23>{ 12¯12}65
表2  Ti的滑移系[25]
图5  DPD前后纯Ti滑移系Schmid因子(m)图
图6  各晶粒滑移系在DPD启动前后的Schmid因子
图7  取向相容因子(ω)原理示意图
图8  液氮温度下经过DPD变形后得到的纯Ti的4类孪晶EBSD图及其变体选择
TwinTwinmm'ω
variant
BasalPrismaticPyramidalPyramidalBasalPrismaticPyramidalPyramidal
<a><a><a><a + c><a><a><a><c + a>
AV10.4310.5820.4970.7160.6240.1480.2050.285*0.170
V20.0130.1210.4530.4560.8330.0310.0510.0750.101
V30.2820.0390.2010.1950.8250.0100.0290.0350.253
V40.4460.3550.6510.7410.7890.0670.2180.1820.387
V50.0160.8110.3390.6740.4700.1040.1510.1980.099
V60.2700.9750.1900.6330.3400.1500.0850.2950.068
BV10.2140.5610.6750.8610.3140.1320.1490.0920.120
V20.0130.9210.1450.4730.5460.1260.0650.1950.094
V30.1200.2310.7200.7420.6110.0530.3190.2600.163
V40.4830.1570.6680.6590.4700.0420.1970.2580.085
V50.0630.4300.2240.2960.9690.0580.0890.1160.203
V60.3380.4540.6780.8130.3000.1030.3010.405*0.030
CV10.2150.4060.6440.7600.6260.0820.1580.1160.208
V20.0060.8240.2850.6450.5010.2270.0860.0990.076
V30.0930.1790.5880.6000.6510.0850.1780.2380.106
V40.4860.0330.4480.4090.7210.0090.1100.1280.177
V50.0600.0480.2340.2250.7700.0200.0410.0630.142
V60.2990.7830.4780.7950.5230.2280.1450.316*0.089
DV10.2160.7410.5670.8520.5050.3360.1190.1420.104
V20.3540.0790.1540.1690.8140.0360.0310.0680.137
V30.0180.1080.6310.6060.6040.0490.1320.2020.124
V40.1340.0370.5420.4940.6900.0140.1560.2170.107
V50.4790.8550.1940.5800.4200.3880.0410.233*0.076
V60.0610.4900.6790.8310.5710.1910.1960.1790.090
表3  纯Ti孪晶变体的选择参数
1 Fu J, Ding H, Huang Y, et al. Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion [J]. J. Mater. Res. Technol., 2015, 4: 2
doi: 10.1016/j.jmrt.2014.10.006
2 Li X M, Sun W L, Han Y, et al. Preparation of Ti(C x N1 - x ) thick films on titanium by plasma electrolytic carbonitriding [J]. Acta Metall. Sin., 2008, 44: 1105
2 李新梅, 孙文磊, 憨 勇 等. 纯钛表面电解液微弧碳氮化制备碳氮化钛厚膜 [J]. 金属学报, 2008, 44: 1105
3 Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. Int. Mater. Rev., 1967, 12: 169
doi: 10.1179/imr.1967.12.1.169
4 Groves G W, Kelly A. Independent slip systems in crystals [J]. Philos. Mag., 1963, 8: 877
doi: 10.1080/14786436308213843
5 Mises R V. Mechanik der plastischen formänderung von kristallen [J]. Z. Angew. Math. Mech., 1928, 8: 161
doi: 10.1002/zamm.19280080302
6 Huang W, Wang Y, Li Z R, et al. Influences of temperature and strain rate on deformation twinning of polycrystalline titanium [J]. Chin. J. Nonferrous. Met., 2008, 18: 1440
6 黄 文, 汪 洋, 李子然 等. 温度和应变率对多晶纯钛孪晶变形的影响 [J]. 中国有色金属学报, 2008, 18: 1440
7 Chichili D R, Ramesh K T, Hemker K J. The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling [J]. Acta Mater., 1998, 46: 1025
doi: 10.1016/S1359-6454(97)00287-5
8 Choi S W, Won J W, Lee S, et al. Deformation twinning activity and twin structure development of pure titanium at cryogenic temperature [J]. Mater. Sci. Eng., 2018, A738: 75
9 Xu F, Zhang X Y, Ni H T, et al. {11 2 ¯ 4} deformation twinning in pure Ti during dynamic plastic deformation [J]. Mater. Sci. Eng., 2012, A541: 190
10 Gurao N P, Kapoor R, Suwas S. Deformation behaviour of commercially pure titanium at extreme strain rates [J]. Acta Mater., 2011, 59: 3431
doi: 10.1016/j.actamat.2011.02.018
11 Zherebtsov S V, Dyakonov G S, Salem A A, et al. Formation of nanostructures in commercial-purity titanium via cryorolling [J]. Acta Mater., 2013, 61: 1167
doi: 10.1016/j.actamat.2012.10.026
12 Li Q, Xu Y B, Bassim M N. Dynamic mechanical behavior of pure titanium [J]. J. Mater. Process. Technol., 2004, 155-156: 1889
doi: 10.1016/j.jmatprotec.2004.04.327
13 Tao N R, LU K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals [J]. J. Mater. Sci. Technol., 2007, 23: 771
doi: 10.1179/174328407X185802
14 Li Y S, Zhang Y, Tao N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Mater., 2009, 57: 761
doi: 10.1016/j.actamat.2008.10.021
15 Guan D K, Wynne B, Gao J H, et al. Basal slip mediated tension twin variant selection in magnesium WE43 alloy [J]. Acta Mater., 2019, 170: 1
doi: 10.1016/j.actamat.2019.03.018
16 Christian J W. Deformation twinning [A]. The Theory of Transformations in Metals and Alloys [M]. Oxford: Elsevier Ltd., 2002: 859
17 Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys [J]. Acta Metall. Mater., 1993, 41: 2611
doi: 10.1016/0956-7151(93)90130-K
18 Reid C N, Gilbert A, Hahn G T. Twinning, slip and catastrophic flow in niobium [J]. Acta Metall., 1966, 14: 975
doi: 10.1016/0001-6160(66)90218-5
19 Wang L, Yang Y, Eisenlohr P, et al. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium [J]. Metall. Mater. Trans., 2009, 41A: 421
20 Chun Y B, Yu S H, Semiatin S L, et al. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium [J]. Mater. Sci. Eng., 2005, A398: 209
21 Lee M S, Jo A R, Hwang S K, et al. The role of strain rate and texture in the deformation of commercially pure titanium at cryogenic temperature [J]. Mater. Sci. Eng., 2021, A827: 142042
22 Won J W, Lee J H, Jeong J S, et al. High strength and ductility of pure titanium via twin-structure control using cryogenic deformation [J]. Scr. Mater., 2020, 178: 94
doi: 10.1016/j.scriptamat.2019.11.009
23 Zeng Z P, Zhang Y S, Jonsson S. Deformation behaviour of commercially pure titanium during simple hot compression [J]. Mater. Des., 2009, 30: 3105
doi: 10.1016/j.matdes.2008.12.002
24 Dahlgren S D, Nicholson W L, Merz M D, et al. Microstructural analysis and tensile properties of thick copper and nickel sputter deposits [J]. Thin Solid Films, 1977, 40: 345
doi: 10.1016/0040-6090(77)90136-5
25 Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Metall. Trans., 1981, 12A: 409
26 Qin H, Jonas J J, Yu H B, et al. Initiation and accommodation of primary twins in high-purity titanium [J]. Acta Mater., 2014, 71: 293
doi: 10.1016/j.actamat.2014.03.025
27 Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
27 张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
28 Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility [J]. Metall. Mater. Trans., 2002, 33A: 813
29 Luster J, Morris M A. Compatibility of deformation in two-phase Ti Al alloys: Dependence on microstructure and orientation relationships [J]. Metall. Mater. Trans., 1995, 26A: 1745
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[12] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[13] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[14] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[15] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.