Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 695-708    DOI: 10.11900/0412.1961.2020.00508
  研究论文 本期目录 | 过刊浏览 |
变形速率对GH3625合金弹-塑性变形行为的影响
高钰璧1,2,3, 丁雨田1,2(), 李海峰4, 董洪标5(), 张瑞尧6, 李军5, 罗全顺3
1.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2.兰州理工大学 材料科学与工程学院 兰州 730050
3.Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
4.北京有色金属研究总院 有色金属材料制备加工国家重点实验室 北京 100088
5.Department of Engineering, University of Leicester, Leicester LE1 7RH, UK
6.Engineering & Innovation, Open University, Milton Keynes MK7 6AA, UK
Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy
GAO Yubi1,2,3, DING Yutian1,2(), LI Haifeng4, DONG Hongbiao5(), ZHANG Ruiyao6, LI Jun5, LUO Quanshun3
1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3.Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
4.State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088, China
5.Department of Engineering, University of Leicester, Leicester LE1 7RH, UK
6.Engineering & Innovation, Open University, Milton Keynes MK7 6AA, UK
引用本文:

高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
Yubi GAO, Yutian DING, Haifeng LI, Hongbiao DONG, Ruiyao ZHANG, Jun LI, Quanshun LUO. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. Acta Metall Sin, 2022, 58(5): 695-708.

全文: PDF(4069 KB)   HTML
摘要: 

利用原位中子衍射室温压缩实验、EBSD和TEM等手段研究了变形速率对GH3625合金弹-塑性变形行为的影响。结果表明,GH3625合金宏观应力-应变曲线包括弹性变形阶段(施加应力σ ≤ 300 MPa)、弹-塑性转变阶段(300 MPa < σ ≤ 350 MPa)和塑性变形阶段(σ > 350 MPa),这与细观晶格应变行为一致。同时,变形速率与晶体弹性和塑性各向异性密切相关。通过特定hkl反射的晶格应变、峰宽和强度的研究结果表明,变形速率对晶体弹性各向异性影响较小,而对晶体塑性各向异性影响较大。随变形速率的增加,大角度晶界逐渐向小角度晶界转变,孪晶界的比例逐渐减小,晶粒由均匀变形向不均匀变形转变。随变形速率的增加,合金的总位错密度(ρ)先减小后增加,而几何必须位错密度(ρGND)单调递增,统计存储位错密度(ρSSD)单调递减;同时,试样在变形速率为0.2 mm/min时表现出反常的加工硬化行为,这主要与均匀变形产生的统计储存位错(SSD)有关;此外,位错强化贡献和TEM观察证实了GH3625合金的塑性变形机制以位错滑移为主,其加工硬化机制是位错强化。

关键词 GH3625合金变形速率原位中子衍射晶格应变弹-塑性各向异性    
Abstract

GH3625 alloy is a typical polycrystalline material. The mechanical properties of a crystal within the alloy depend on the single crystal properties, lattice orientation, and orientations of neighboring crystals. However, accurate determination of single crystal properties is critical in developing a quantitative understanding of the micromechanical behavior of GH3625. In this study, the effect of deformation rate on the elastoplastic deformation behavior of GH3625 was investigated using in situ neutron diffraction room-temperature compression experiments, EBSD, and TEM. The results showed that the microscopic stress-strain curve included elastic deformation (applied stress σ ≤ 300 MPa), elastoplastic transition (300 MPa < σ ≤ 350 MPa), and plastic deformation (σ > 350 MPa) stages, which agreed with the mesoscopic lattice strain behavior. Meanwhile, the deformation rate was closely related to the crystal elastic and plastic anisotropy. The results of the lattice strain, peak width, and peak intensity reflected by the specific hkl showed that the deformation rate had little effect on the elastic anisotropy of the crystal, but had a significant effect on the plastic anisotropy of the crystal. With the increase in the deformation rate, the high angle grain boundaries gradually changed to the low angle grain boundaries, and the proportion of twin boundaries gradually reduced. Also, the grains transformed from uniform deformation to nonuniform deformation. Moreover, with the increase in deformation rate, the total dislocation density (ρ) of the alloy first decreased and then increased, whereas the geometrically necessary dislocation density (ρGND) monotonically increased, and the statistically stored dislocation (SSD) density (ρSSD) monotonically decreased. Meanwhile, the abnormal work hardening behavior of the sample at a deformation rate of 0.2 mm/min was mainly related to the SSD generated by uniform deformation. Additionally, the contribution of dislocation strengthening and TEM observation confirmed that the dominant deformation of GH3625 was dislocation slip, and its work hardening mechanism was dislocation strengthening.

Key wordsGH3625 alloy    deformation rate    in situ neutron diffraction    lattice strain    elastic and plastic anisotropy
收稿日期: 2020-12-18     
ZTFLH:  TG146.15  
基金资助:国家重点研发计划项目(2017YFA0700703);国家自然科学基金项目(51661019);甘肃省科技重大专项项目(145RTSA004);兰州理工大学红柳一流学科建设计划项目,兰州理工大学优秀博士学位论文培育计划项目,兰州理工大学优秀学生出国(境)学习交流基金和省部共建国家重点实验室合作交流基金项目
作者简介: 高钰璧,男,1991年生,博士生
图1  GH3625合金在不同变形速率(r)下的压缩应力-应变曲线和加工硬化率曲线
图2  不同变形速率下GH3625合金压缩变形过程中的中子衍射图演变
Stress/(111)(200)(220)(311)
strain

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

5 MPa0.208300.000841.173580.180400.000680.694360.127580.000480.503830.108780.000390.65635
100 MPa0.208220.000841.173370.180310.000700.683170.127520.000460.496030.108740.000400.66543
150 MPa0.208180.000831.165700.180260.000700.690870.127500.000460.498450.108710.000410.67213
200 MPa0.208140.000831.181920.180190.000670.687820.127460.000450.529440.108680.000420.64227
250 MPa0.208110.000851.181350.180130.000680.698150.127440.000480.510710.108650.000400.65870
300 MPa0.208050.000851.241630.180030.000700.699990.127410.000470.526550.108630.000400.67256
350 MPa0.208030.000911.289640.179940.000750.709850.127410.000470.516370.108600.000440.60751
-1.4%0.208020.000911.273270.179940.000760.676520.127410.000480.546830.108600.000450.62113
-2.8%0.207990.000941.176620.179890.000860.608780.127400.000510.521390.108570.000490.57157
-4.4%0.207990.001001.086040.179870.000880.539750.127380.000550.516390.108560.000520.50773
-5.8%0.207960.001010.977780.179820.000960.482650.127370.000570.522860.108540.000570.45533
-7.6%0.207930.001060.879450.179780.001030.448690.127350.000610.528130.108520.000570.45751
-9.0%0.207900.001070.830190.179750.001150.393490.127330.000630.535340.108500.000590.44199
-10.6%0.207870.001110.783690.179700.001130.423110.127300.000680.532570.108490.000660.42624
表1  r = 0.2 mm/min时不同应力/应变、不同(hkl)晶面上GH3625合金的晶面间距(d)、衍射峰强度(I)和半峰全宽(FWHM)
Stress/(111)(200)(220)(311)
strain

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

5 MPa0.208340.000831.119340.180430.000610.393880.127610.000480.582430.108820.000410.58707
100 MPa0.208270.000831.109250.180330.000650.401340.127550.000480.610180.108760.000410.60243
150 MPa0.208240.000851.097920.180280.000610.425570.127520.000470.615320.108730.000400.60224
200 MPa0.208190.000851.121290.180210.000620.406320.127500.000470.608320.108710.000410.59379
250 MPa0.208150.000851.132480.180150.000630.423010.127470.000480.618030.108680.000410.58574
300 MPa0.208110.000851.231820.180060.000620.448080.127450.000490.611650.108660.000410.59740
350 MPa0.208080.000911.312230.179980.000680.465370.127440.000510.640620.108640.000460.55437
-1.9%0.208080.000941.293990.179980.000730.445670.127450.000510.663330.108620.000450.54972
-3.4%0.208060.000981.192560.179930.000760.408790.127440.000540.648450.108620.000490.53572
-5.4%0.208040.001001.106160.179900.000840.357670.127420.000570.657660.108600.000520.49431
-7.4%0.208010.001031.048470.179890.000920.333640.127400.000600.671820.108580.000550.46532
-10.0%0.208000.001070.959930.179860.000990.313100.127390.000640.670010.108570.000560.49341
-12.2%0.207990.001100.882180.179820.001060.331930.127380.000670.669010.108550.000620.44359
-14.8%0.207970.001150.828220.179790.001100.357730.127350.000710.654680.108540.000680.47036
-18.3%0.207930.001250.800480.179770.001320.465610.127300.000740.576090.108520.000710.51191
表2  r = 0.5 mm/min时不同应力/应变、不同(hkl)晶面上GH3625合金的d、I和FWHM
Stress/(111)(200)(220)(311)
strain

d

nm

FWHM nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

5 MPa0.208340.000841.088750.180430.000610.456290.127610.000480.570520.108800.000410.58913
100 MPa0.208260.000831.084200.180330.000620.470410.127550.000490.564110.108770.000420.58839
150 MPa0.208210.000841.105900.180290.000660.442410.127520.000480.594920.108730.000400.60091
200 MPa0.208180.000841.127070.180230.000680.436530.127500.000490.573890.108710.000430.56066
250 MPa0.208130.000841.072780.180160.000620.463510.127470.000480.573120.108690.000420.58799
300 MPa0.208090.000841.205570.180060.000660.488470.127440.000460.609830.108660.000410.60782
350 MPa0.208070.000911.279270.179980.000710.490840.127440.000510.625140.108620.000450.57167
-1.7%0.208080.000921.274990.179980.000750.482620.127440.000510.631460.108620.000460.54988
-3.1%0.208050.000941.233290.179950.000810.426480.127440.000560.609000.108620.000490.52269
-4.8%0.208030.001011.127620.179900.000870.379790.127420.000560.649100.108610.000540.49041
-6.3%0.208010.001021.061780.179890.000920.350760.127420.000600.650440.108590.000550.47232
-8.2%0.208000.001070.975670.179840.001010.357280.127390.000630.646310.108560.000600.44765
-9.6%0.207970.001120.936140.179820.001050.360700.127380.000690.638840.108540.000610.47602
-11.3%0.207940.001210.869710.179820.001160.388220.127340.000710.655720.108520.000670.47575
-12.3%0.208400.001160.851740.180450.001100.458900.127670.000660.658230.108850.000660.52180
表3  r = 1.0 mm/min时不同应力/应变、不同(hkl)晶面上GH3625合金的d、I和FWHM
图3  不同变形速率、不同(hkl)晶面上GH3625合金晶格应变与施加应力的关系
r / (mm·min-1)E111 / GPaE220 / GPaE311 / GPaE200 / GParE
0.2255.41 ± 6.93224.68 ± 6.40193.63 ± 4.82146.07 ± 8.441.75
0.5261.16 ± 7.17243.10 ± 6.16199.51 ± 4.21145.23 ± 7.171.80
1.0252.99 ± 5.09236.29 ± 5.92201.09 ± 8.99145.10 ± 11.421.74
表4  不同变形速率下GH3625合金的弹性模量(Ehkl )和Young's模量各向异性(rE )
图4  不同变形速率、不同(hkl)晶面上GH3625合金压缩变形过程中的衍射峰强度演变
图5  不同变形速率、不同(hkl)晶面上GH3625合金压缩变形过程中的衍射峰宽化演变
图6  不同状态下GH3625合金的微观组织及其应变分布特征演变
图7  不同状态下GH3625合金的取向差分布演变
图8  GH3625合金在0.5 mm/min变形速率压缩变形后组织的TEM像
图9  GH3625合金不同状态下的几何必须位错密度(ρGND)分布和平均ρGND
图10  不同变形速率下GH3625合金的总位错密度(ρ)随应变的变化规律和位错强化贡献
r / (mm·min-1)ρρGNDρSSD
0.218.48 ± 1.8111.337.15 ± 1.81
0.518.62 ± 1.4913.175.45 ± 1.49
1.015.83 ± 1.1914.281.55 ± 1.19
表5  不同变形速率下GH3625合金压缩变形后的ρ、ρGND和统计存储位错密度(ρSSD) (1014 m-2)
图11  不同状态下GH3625合金的晶粒取向分布函数(ODF)截面图
1 Mathew M D, Parameswaran P, Rao K B S. Microstructural changes in alloy 625 during high temperature creep [J]. Mater. Charact., 2008, 59: 508
doi: 10.1016/j.matchar.2007.03.007
2 Ren X, Sridharan K, Allen T R. Corrosion behavior of alloys 625 and 718 in supercritical water [J]. Corrosion, 2007, 63: 603
doi: 10.5006/1.3278410
3 Mittra J, Dubey J S, Banerjee S. Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625 [J]. Scr. Mater., 2003, 49: 1209
doi: 10.1016/S1359-6462(03)00488-3
4 Wong S L, Dawson P R. Influence of directional strength-to-stiffness on the elastic-plastic transition of fcc polycrystals under uniaxial tensile loading [J]. Acta Mater., 2010, 58: 1658
doi: 10.1016/j.actamat.2009.11.009
5 Yan S C, Cheng M, Zhang S H, et al. High-temperature high-speed hot deformation behavior of Inconel alloy 625 [J]. Chin. J. Mater. Res., 2010, 24: 239
5 闫士彩, 程 明, 张士宏 等. Inconel 625合金的高温高速热变形行为 [J]. 材料研究学报, 2010, 24: 239
6 Li D F, Guo Q M, Guo S L, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy [J]. Mater. Des., 2011, 32: 696
doi: 10.1016/j.matdes.2010.07.040
7 Badrish C A, Kotkunde N, Salunke O, et al. Study of anisotropic material behavior for Inconel 625 alloy at elevated temperatures [J]. Mater. Today: Proc., 2019, 18: 2760
8 Rodriguez R, Hayes R W, Berbon P B, et al. Tensile and creep behavior of cryomilled Inco 625 [J]. Acta Mater., 2003, 51: 911
doi: 10.1016/S1359-6454(02)00494-9
9 Ding Y T, Gao Y B, Dou Z Y, et al. Study on cold deformation behavior and heat treatment process of GH3625 superalloy tubes [J]. Mater. Rev., 2017, 31(10): 70
9 丁雨田, 高钰璧, 豆正义 等. GH3625合金管材冷变形行为及热处理工艺研究 [J]. 材料导报, 2017, 31(10): 70
10 Ding Y T, Gao Y B, Dou Z Y, et al. Microstructure evolution during intermediate annealing of cold-deformed GH3625 superalloy tubes [J]. Trans. Mater. Heat Treat., 2017, 38(2): 178
10 丁雨田, 高钰璧, 豆正义 等. 冷变形GH3625合金管材中间退火过程中的组织演变 [J]. 材料热处理学报, 2017, 38(2): 178
11 Gao Y B, Ding Y T, Chen J J, et al. Behavior of cold work hardening and annealing softening and microstructure characteristics of GH3625 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 44
11 高钰璧, 丁雨田, 陈建军 等. GH3625合金冷变形硬化、退火软化行为及其组织特征 [J]. 中国有色金属学报, 2019, 29: 44
12 Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
13 Jia N, Peng R L, Brown D W, et al. Tensile deformation behavior of duplex stainless steel studied by in-situ time-of-flight neutron diffraction [J]. Metall. Mater. Trans., 2008, 39A: 3134
14 Daymond M R, Bouchard P J. Elastoplastic deformation of 316 stainless steel under tensile loading at elevated temperatures [J]. Metall. Mater. Trans., 2006, 37A: 1863
15 Lee C, Kim G, Chou Y, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy [J]. Sic. Adv., 2020, 6: eaaz4748
16 Wang Z Q, Stoica A D, Ma D, et al. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction [J]. Mater. Sci. Eng., 2016, A674: 406
17 Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst., 2006, 39: 812
doi: 10.1107/S0021889806042245
18 Mo S H, Li X W. Fundamentals of Materials Science [M]. Harbin: Harbin Institute of Technology Press, 2012: 238
18 莫淑华, 李学伟. 材料科学基础 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 238
19 Yu D J, Huang L, Chen Y, et al. Real-time in situ neutron diffraction investigation of phase-specific load sharing in a cold-rolled TRIP sheet steel [J]. JOM, 2018, 70: 1576
doi: 10.1007/s11837-018-2947-4
20 Ye X Y, Dong J X, Zhang M C. Cold deformation of GH738 alloy and its recrystallization behavior during intermediate annealing [J]. Rare Met. Mater. Eng., 2013, 42: 1423
20 叶校瑛, 董建新, 张满仓. GH738合金冷变形及中间退火再结晶行为研究 [J]. 稀有金属材料与工程, 2013, 42: 1423
21 Wen B, Lü X D, Du J H. Cold deformation behavior of GH4169 alloy [J]. Heat Treat. Met., 2020, 45: 23
21 温 博, 吕旭东, 杜金辉. GH4169合金的冷变形行为 [J]. 金属热处理, 2020, 45: 23
22 Zhu C Y, Harrington T, Gray G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
doi: 10.1016/j.actamat.2018.05.022
23 Harjo S, Tomota Y, Lukáš P, et al. In situ neutron diffraction study of α-γ Fe-Cr-Ni alloys under tensile deformation [J]. Acta Mater., 2001, 49: 2471
doi: 10.1016/S1359-6454(01)00147-1
24 Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J]. Acta Mater., 1998, 46: 3087
doi: 10.1016/S1359-6454(98)00014-7
25 Wu Y, Liu W H, Wang X L, et al. In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy [J]. Appl. Phys. Lett., 2014, 104: 051910
26 Aba-Perea P E, Pirling T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys [J]. Mater. Des., 2015, 89: 856
doi: 10.1016/j.matdes.2015.09.152
27 Clausen B, Lorentzen T, Bourke M A M, et al. Lattice strain evolution during uniaxial tensile loading of stainless steel [J]. Mater. Sci. Eng., 1999, A259: 17
28 Huang E W, Barabash R, Jia N, et al. Slip-system-related dislocation study from in-situ neutron measurements [J]. Metall. Mater. Trans., 2008, 39A: 3079
29 Woo W, Huang E W, Yeh J W, et al. In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy [J]. Intermetallics, 2015, 62: 1
doi: 10.1016/j.intermet.2015.02.020
30 Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
doi: 10.1016/j.actamat.2017.01.034
31 Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
doi: 10.1016/j.actamat.2018.05.013
32 Ungár T. Microstructural parameters from X-ray diffraction peak broadening [J]. Scr. Mater., 2004, 51: 777
doi: 10.1016/j.scriptamat.2004.05.007
33 Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17: 316
34 Gao Y B, Ding Y T, Chen J J, et al. Evolution of microstructure and texture during cold deformation of hot-extruded GH3625 alloy [J]. Acta Metall. Sin., 2019, 55: 547
34 高钰璧, 丁雨田, 陈建军 等. 挤压态GH3625合金冷变形过程中的组织和织构演变 [J]. 金属学报, 2019, 55: 547
doi: 10.11900/0412.1961.2018.00414
35 Li B L, Godfrey A, Meng Q C, et al. Microstructural evolution of IF-steel during cold rolling [J]. Acta Mater., 2004, 52: 1069
doi: 10.1016/j.actamat.2003.10.040
36 Randle V. ‘Special’ boundaries and grain boundary plane engineering [J]. Scr. Mater., 2006, 54: 1011
doi: 10.1016/j.scriptamat.2005.11.050
37 Feng C, Li D F, Guo S L, et al. Effects of tensile deformation on microstructure and mechanical properties of Hastelloy C-276 alloy [J]. Rare Met. Mater. Eng., 2016, 45: 3128
37 冯 策, 李德福, 郭胜利 等. 拉伸变形对Hastelloy C-276合金组织与力学性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 3128
38 El-Danaf E, Kalidindi S R, Doherty R D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J]. Metall. Mater. Trans., 1999, 30A: 1223
39 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
40 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
41 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
42 Christien F, Telling M T F, Knight K S. Neutron diffraction in situ monitoring of the dislocation density during martensitic transformation in a stainless steel [J]. Scr. Mater., 2013, 68: 506
doi: 10.1016/j.scriptamat.2012.11.031
43 Liang X Z, Dodge M F, Kabra S, et al. Effect of hydrogen charging on dislocation multiplication in pre-strained super duplex stainless steel [J]. Scr. Mater., 2018, 143: 20
doi: 10.1016/j.scriptamat.2017.09.001
44 Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy [J]. Mater. Sci. Eng., 2019, A767: 138361
45 Taylor G I. The mechanism of plastic deformation of crystals. Part I. Theoretical [J]. Proc. Roy. Soc. London, 1934, 145A: 362
46 Mao W M. Crystallographic Texture and Anisotropy of Metallic Materials [M]. Beijing: Science Press, 2002: 41
46 毛卫民. 金属材料的晶体学织构与各向异性 [M]. 北京: 科学出版社, 2002: 41
[1] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[2] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[3] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[4] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[5] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[6] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[7] 徐平光; 友田阳 . 基于原位中子衍射表征技术的进展[J]. 金属学报, 2006, 42(7): 681-688 .