|
|
激光热力交互增材制造Ti6Al4V合金的组织及力学性能 |
卢海飞, 吕继铭, 罗开玉, 鲁金忠( ) |
江苏大学 机械工程学院 镇江 212013 |
|
Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects |
LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong( ) |
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
引用本文:
卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
Haifei LU,
Jiming LV,
Kaiyu LUO,
Jinzhong LU.
Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. Acta Metall Sin, 2023, 59(1): 125-135.
1 |
Zhao Y Q, Xi Z P, Qu H L. Current situation of titanium alloy materials used for national aviation [J]. J. Aeronaut. Mater., 2003, 23(): 215
|
1 |
赵永庆, 奚正平, 曲恒磊. 我国航空用钛合金材料研究现状 [J]. 航空材料学报, 2003, 23(suppl.) : 215
|
2 |
Machado A R, Wallbank J. Machining of titanium and its alloys—A review [J]. Proc. Inst. Mech. Eng., 1990, 204B: 53
|
3 |
Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys [J]. Mater. Technol., 2016, 31: 90
|
4 |
Liang Z Y, Zhang A F, Liang S D, et al. Research developments of high-performance titanium alloy by laser additive manufacturing technology [J]. Appl. Laser, 2017, 37: 452
|
4 |
梁朝阳, 张安峰, 梁少端 等. 高性能钛合金激光增材制造技术的研究进展 [J]. 应用激光, 2017, 37: 452
|
5 |
Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2006, 12: 254
doi: 10.1108/13552540610707013
|
6 |
Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting [J]. Acta Mater., 2015, 96: 72
doi: 10.1016/j.actamat.2015.06.004
|
7 |
Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
|
7 |
吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
|
8 |
Lv Y, Lei L Q, Sun L N. Influence of different combined severe shot peening and laser surface melting treatments on the fatigue performance of 20CrMnTi steel gear [J]. Mater. Sci. Eng., 2016, A658: 77
|
9 |
Chen A Y, Jia Y Q, Pan D, et al. Reinforcement of laser-welded stainless steels by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2013, A571: 161
|
10 |
Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling [J]. J. Mater. Process. Technol., 2013, 213: 1782
doi: 10.1016/j.jmatprotec.2013.04.012
|
11 |
Fan Y J, Zhao X H, Liu Y. Research on fatigue behavior of the flash welded joint enhanced by ultrasonic peening treatment [J]. Mater. Des., 2016, 94: 515
doi: 10.1016/j.matdes.2016.01.070
|
12 |
Hatamleh O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints [J]. Int. J. Fatigue, 2009, 31: 974
doi: 10.1016/j.ijfatigue.2008.03.029
|
13 |
Montross C S, Wei T, Lin Y, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: A review [J]. Int. J. Fatigue, 2002, 24: 1021
doi: 10.1016/S0142-1123(02)00022-1
|
14 |
Gao Y K. Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy [J]. Acta Metall. Sin., 2016, 52: 915
|
14 |
高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915
doi: 10.11900/0412.1961.2015.00628
|
15 |
Dorman M, Toparli M B, Smyth N, et al. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects [J]. Mater. Sci. Eng., 2012, A548: 142
|
16 |
Luo K Y, Jing X, Sheng J, et al. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment [J]. J. Alloys Compd., 2016, 673: 158
doi: 10.1016/j.jallcom.2016.02.266
|
17 |
Kalentics N, Boillat E, Peyre P, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening [J]. Addit. Manuf., 2017, 16: 90
|
18 |
Luo S H, He W F, Chen K, et al. Regain the fatigue strength of laser additive manufactured Ti alloy via laser shock peening [J]. J. Alloys Compd., 2018, 750: 626
doi: 10.1016/j.jallcom.2018.04.029
|
19 |
Sun R J, Li L H, Zhu Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening [J]. J. Alloys Compd., 2018, 747: 255
doi: 10.1016/j.jallcom.2018.02.353
|
20 |
Chi J X, Cai Z Y, Wan Z D, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties [J]. Surf. Coat. Technol., 2020, 396: 125908
doi: 10.1016/j.surfcoat.2020.125908
|
21 |
Guo W, Sun R J, Song B W, et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy [J]. Surf. Coat. Technol., 2018, 349: 503
doi: 10.1016/j.surfcoat.2018.06.020
|
22 |
Chi J X, Cai Z Y, Zhang H P, et al. Combining manufacturing of titanium alloy through direct energy deposition and laser shock peening processes [J]. Mater. Des., 2021, 203: 109626
doi: 10.1016/j.matdes.2021.109626
|
23 |
Lan L, Jin X Y, Gao S, et al. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening [J]. J. Mater. Sci. Technol., 2020, 50: 153
doi: 10.1016/j.jmst.2019.11.039
|
24 |
Jin X Y, Lan L, Gao S, et al. Effects of laser shock peening on microstructure and fatigue behavior of Ti-6Al-4V alloy fabricated via electron beam melting [J]. Mater. Sci. Eng., 2020, A780: 139199
|
25 |
Peyre P, Carboni C, Forget P, et al. Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel [J]. J. Mater. Sci., 2007, 42: 6866
doi: 10.1007/s10853-007-1502-4
|
26 |
Kalentics N, Boillat E, Peyre P, et al. 3D laser shock peening—A new method for the 3D control of residual stresses in selective laser melting [J]. Mater. Des., 2017, 130: 350
doi: 10.1016/j.matdes.2017.05.083
|
27 |
Kalentics N, Sohrabi N, Tabasi H G, et al. Healing cracks in selective laser melting by 3D laser shock peening [J]. Addit. Manuf., 2019, 30: 100881
|
28 |
Kalentics N, de Seijas M O V, Griffiths S, et al. 3D Laser shock peening—A new method for improving fatigue properties of selective laser melted parts [J]. Addit. Manuf., 2020, 33: 101112
|
29 |
Bartlett J L, Li X D. An overview of residual stresses in metal powder bed fusion [J]. Addit. Manuf., 2019, 27: 131
doi: 10.1016/j.addma.2019.02.020
|
30 |
Lu J Z, Wu L J, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts [J]. Acta Mater., 2017, 127: 252
doi: 10.1016/j.actamat.2017.01.050
|
31 |
Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
doi: 10.1016/j.matdes.2015.10.027
|
32 |
Liu X Q, Tan C W, Zhang J, et al. Influence of microstructure and strain rate on adiabatic shearing behavior in Ti-6Al-4V alloys [J]. Mater. Sci. Eng., 2009, A501: 30
|
33 |
Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance [J]. Int. J. Fatigue, 2013, 48: 300
doi: 10.1016/j.ijfatigue.2012.11.011
|
34 |
Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect [J]. Mater. Sci. Eng., 2012, A531: 112
|
35 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
36 |
Wang C L, Yu D P, Niu Z Q, et al. The role of pyramidal <c + a> dislocations in the grain refinement mechanism in Ti-6Al-4V alloy processed by severe plastic deformation [J]. Acta Mater., 2020, 200: 101
doi: 10.1016/j.actamat.2020.08.076
|
37 |
Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
|
38 |
Tian X N, Zhu Y M, Lim C V S, et al. Isotropic and improved tensile properties of Ti-6Al-4V achieved by in-situ rolling in direct energy deposition [J]. Addit. Manuf., 2021, 46: 102151
|
39 |
Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts [J]. Rapid Prototyp. J., 2007, 13: 196
doi: 10.1108/13552540710776142
|
40 |
Lv J M, Luo K Y, Lu H F, et al. Achieving high strength and ductility in selective laser melting Ti-6Al-4V alloy by laser shock peening [J]. J. Alloys Compd., 2022, 899: 163335
doi: 10.1016/j.jallcom.2021.163335
|
41 |
Lu H F, Wu L J, Wei H L, et al. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening [J]. Addit. Manuf., 2022, 55: 102877
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|