Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1118-1128    DOI: 10.11900/0412.1961.2021.00053
  研究论文 本期目录 | 过刊浏览 |
淬火速率对7136铝合金应力腐蚀开裂敏感性的影响
马志民1,2,3, 邓运来1,3, 刘佳2, 刘胜胆1,3(), 刘洪雷4
1.中南大学 材料科学与工程学院 长沙 410083
2.包头职业技术学院 包头 014030
3.中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410083
4.东北轻合金有限责任公司 哈尔滨 150060
Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy
MA Zhimin1,2,3, DENG Yunlai1,3, LIU Jia2, LIU Shengdan1,3(), LIU Honglei4
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Baotou Vocational and Technical College, Baotou 014030, China
3.Key Laboratory of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
4.Northeast Light Alloy Company Ltd., Harbin 150060, China
引用本文:

马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
Zhimin MA, Yunlai DENG, Jia LIU, Shengdan LIU, Honglei LIU. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. Acta Metall Sin, 2022, 58(9): 1118-1128.

全文: PDF(3932 KB)   HTML
摘要: 

针对7xxx系铝合金的抗应力腐蚀性能对淬火速率敏感的问题,通过浸入式末端淬火和慢应变速率拉伸实验研究了淬火速率对7136铝合金应力腐蚀开裂(SCC)敏感性的影响规律。结果显示,随着淬火速率的减小,合金的SCC敏感性先增高后降低,淬火速率约为5.3℃/s时的SCC敏感性最高;SCC裂纹扩展方式由穿晶扩展转变为沿晶扩展。淬火速率越小淬火析出相越多,尺寸越大,晶界和亚晶界附近的无沉淀析出带越宽。淬火速率大于5.3℃/s时,晶界析出相中Zn、Mg元素含量随淬火速率减小迅速增加,而淬火速率小于5.3℃/s后,Cu元素含量迅速增加。晶界和亚晶界析出相形貌特征以及晶界析出相化学成分的变化是SCC敏感性随淬火速率减小先增加后降低的主要原因。

关键词 铝合金应力腐蚀开裂淬火速率微观组织    
Abstract

7xxx series aluminum alloys are well-known structural materials, and they have been used in various fields, such as aerospace and vehicle, owing to their low density, high strength, and good formability. However, they are susceptible to stress corrosion cracking (SCC). SCC reduces the service life of these alloys and limits their application. With the development of the aerospace and vehicle industries, high-strength 7xxx series aluminum alloys are manufactured as semiproducts with large sections, such as thick plates, to avoid welding and jointing defaults. Quenching is a critical step for producing thick plates because their properties, such as SCC susceptibility, are sensitive to the quenching rate, and the quenching rate is generally lower at the center layer than at the surface layer during quenching. In this study, the effect of quenching rate on the SCC susceptibility of 7136 aluminum alloy was investigated using immersion end-quenching technique and slow strain rate tensile (SSRT) test. The strength, elongation, and fracture time of the samples after SSRT in oil and NaCl solution were obtained, and the crack features on and near the fracture surface were examined using SEM. SCC susceptibility was evaluated using the reduction rates of strength, elongation, fracture time, and stress corrosion sensitivity index (ISSRT). The mechanism is discussed herein based on microstructural examination using SEM, EBSD, STEM in a HAADF mode, and EDS. Results show that the SCC susceptibility of the alloy first increases and then decreases with the decrease in the quenching rate. The SCC susceptibility is the highest at the quenching rate of approximately 5.3°C/s with the Ithe number and size of quench-induced precipitates increase gradually, and the precipitate free zones (PFZs) near grain boundary (GB) and subgrain boundary (SGB) widen; and the contents of Zn and Mg in precipitates at grain boundaries increase rapidly when the quenching rate is greater than 5.3oC/s, and Cu content increases rapidly when the quenching rate is lower than 5.3oC/s. The quench-induced changes in the morphology and chemical composition of precipitates at GB/SGB are the main reasons for the SCC susceptibility to increase first and then decrease with the decrease in the quenching rate.

Key wordsaluminum alloy    stress corrosion cracking    quenching rate    microstructure
收稿日期: 2021-01-29     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2016YFB0300901);内蒙古自治区高等学校科学研究项目(NJZY21092)
作者简介: 马志民,男,1981年生,博士生
图1  末端淬火示意图及慢应变速率拉伸试样尺寸
图2  7136铝合金试样不同位置的时间-温度曲线与平均淬火速率
图3  淬火速率为263.0、5.3和1.8℃/s时7136铝合金试样的应力-应变曲线
图4  不同淬火速率下7136铝合金试样的强度、伸长率及断裂时间及相应的下降率(KR、KA、Kt)
图5  不同淬火速率下7136铝合金试样的应力腐蚀敏感指数(ISSRT)
图6  在NaCl溶液中的不同淬火速率下7136铝合金试样断口形貌的SEM像
图7  在NaCl溶液中不同淬火速率下7136铝合金试样断口附近的SEM像
图8  不同淬火速率7136铝合金试样纵截面晶粒取向分布图
图9  不同淬火速率7136铝合金试样的SEM像
图10  不同淬火速率7136铝合金试样的STEM-HAADF像
图11  不同淬火速率7136铝合金试样晶界和亚晶界上析出相的特征参数
图12  淬火速率为263.0℃/s时7136铝合金试样晶界处的STEM-HAADF像和EDS面扫描图
图13  不同淬火速率7136铝合金试样晶界析出相中Zn、Mg、Cu元素的含量
图14  不同淬火速率下7136铝合金应力腐蚀开裂裂纹扩展示意图
图15  淬火速率为5.3和1.8℃/s时7136铝合金试样中不同无沉淀析出带宽度的晶界和亚晶界的比例
1 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
1 邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
2 Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2003
doi: 10.1016/S1003-6326(14)63306-9
3 Knight S P, Pohl K, Holroyd N J H, et al. Some effects of alloy composition on stress corrosion cracking in Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2015, 98: 50
doi: 10.1016/j.corsci.2015.05.016
4 Chen S Y, Li J Y, Hu G Y, et al. Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy [J]. J. Alloys Compd., 2018, 757: 259
doi: 10.1016/j.jallcom.2018.05.063
5 Liu L, Jia Y Y, Jiang J T, et al. The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys [J]. J. Alloys Compd., 2019, 799: 1
doi: 10.1016/j.jallcom.2019.05.189
6 Yu M Y, Zhang Y A, Li X W, et al. Effect of recrystallization on plasticity, fracture toughness and stress corrosion cracking of a high-alloying Al-Zn-Mg-Cu alloy [J]. Mater. Lett., 2020, 275: 128074
doi: 10.1016/j.matlet.2020.128074
7 Xie P, Chen S Y, Chen K H, et al. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment [J]. Corros. Sci., 2019, 161: 108184
doi: 10.1016/j.corsci.2019.108184
8 Chen J F, Zhang X F, Zou L C, et al. Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy [J]. Mater. Charact., 2016, 114: 1
doi: 10.1016/j.matchar.2016.01.022
9 Yuan D L, Chen K H, Chen S Y, et al. Enhancing stress corrosion cracking resistance of low Cu-containing Al-Zn-Mg-Cu alloys by slow quench rate [J]. Mater. Des., 2019, 164: 107558
doi: 10.1016/j.matdes.2018.107558
10 Jiang F Q, Huang J W, Jiang Y G, et al. Effects of quenching rate and over-aging on microstructures, mechanical properties and corrosion resistance of an Al-Zn-Mg (7046A) alloy [J]. J. Alloys Compd., 2021, 854: 157272
doi: 10.1016/j.jallcom.2020.157272
11 Chen S Y, Chen K H, Peng G S, et al. Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 47
doi: 10.1016/S1003-6326(11)61138-2
12 Xiao Q F, Xu Y M, Huang J W, et al. Effects of quenching agents, two-step aging and microalloying on tensile properties and stress corrosion cracking of Al-Zn-Mg-Cu alloys [J]. J. Mater. Res. Technol., 2020, 9: 10198
doi: 10.1016/j.jmrt.2020.07.014
13 Liu S D, Chen B, Li C B, et al. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]. Corros. Sci., 2015, 91: 203
doi: 10.1016/j.corsci.2014.11.024
14 Liu S D, Zhong Q M, Zhang Y, et al. Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time-temperature-properties diagrams [J]. Mater. Des., 2010, 31: 3116
doi: 10.1016/j.matdes.2009.12.038
15 Ma Z M, Liu J, Yang Z S, et al. Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA 7136 alloy [J]. Mater. Charact., 2020, 168: 110533
doi: 10.1016/j.matchar.2020.110533
16 Sun Y W, Pan Q L, Sun Y Q, et al. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy [J]. J. Alloys Compd., 2019, 783: 329
doi: 10.1016/j.jallcom.2018.12.151
17 Fang H C, Chao H, Chen K H. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy [J]. J. Alloys Compd., 2015, 622: 166
doi: 10.1016/j.jallcom.2014.10.044
18 Liao Y G, Han X Q, Zeng M X, et al. Influence of Cu on microstructure and tensile properties of 7xxx series aluminum alloy [J]. Mater. Des., 2015, 66: 581
doi: 10.1016/j.matdes.2014.05.003
19 Chemin A, Marques D, Bisanha L, et al. Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys [J]. Mater. Des., 2014, 53: 118
doi: 10.1016/j.matdes.2013.07.003
20 Godard D, Archambault P, Aeby-Gautier E, et al. Precipitation sequences during quenching of the AA 7010 alloy [J]. Acta Mater., 2002, 50: 2319
doi: 10.1016/S1359-6454(02)00063-0
21 Chen J S, Li X W, Xiong B Q, et al. Quench sensitivity of novel Al-Zn-Mg-Cu alloys containing different Cu contents [J]. Rare Met., 2020, 39: 1395
doi: 10.1007/s12598-017-0981-y
22 Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation [J]. Mater. Sci. Eng., 2003, A363: 140
23 Garner A, Euesden R, Yao Y C, et al. Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys [J]. Acta Mater., 2021, 202: 190
doi: 10.1016/j.actamat.2020.10.021
24 Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52: 4727
doi: 10.1016/j.actamat.2004.06.023
25 Tanguy D, Bayle B, Dif R, et al. Hydrogen effects during IGSCC of pure Al-5Mg alloy in NaCl media [J]. Corros. Sci., 2002, 44: 1163
doi: 10.1016/S0010-938X(01)00140-8
26 Magnin T, Chambreuil A, Bayle B. The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys [J]. Acta Mater., 1996, 44: 1457
doi: 10.1016/1359-6454(95)00301-0
27 Song F X, Zhang X M, Liu S D, et al. The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 [J]. Corros. Sci., 2014, 78: 276
doi: 10.1016/j.corsci.2013.10.010
28 Christodoulou L, Flower H M. Hydrogen embrittlement and trapping in Al-6%-Zn-3%-Mg [J]. Acta Metall., 1980, 28: 481
doi: 10.1016/0001-6160(80)90138-8
29 Tsai T C, Chuang T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys [J]. Mater. Sci. Eng., 1997, A225: 135
30 Wang L, Dong C F, Zhang D W, et al. Effect of alloying elements on initial corrosion behavior of aluminum alloy in Bangkok, Thailand [J]. Acta Metall. Sin., 2020, 56: 119
30 王 力, 董超芳, 张达威 等. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响 [J]. 金属学报, 2020, 56: 119
31 Sarkar B, Marek M, Starke E A. The effect of copper content and heat treatment on the stress corrosion characteristics of Al-6Zn-2Mg-XCu alloys [J]. Metall. Trans., 1981, 12A: 1939
32 Rao A C U, Vasu V, Govindaraju M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1447
doi: 10.1016/S1003-6326(16)64220-6
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[13] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[14] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[15] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.