Please wait a minute...
金属学报  2022, Vol. 58 Issue (7): 883-894    DOI: 10.11900/0412.1961.2020.00533
  研究论文 本期目录 | 过刊浏览 |
MoNb改性FeCrAl不锈钢高温组织演变和力学性能
温冬辉1, 姜贝贝2, 王清3(), 李相伟1, 张鹏1, 张书彦1()
1.东莞材料基因高等理工研究院 东莞 523808
2.广东工业大学 分析测试中心 广州 510006
3.大连理工大学 材料科学与工程学院 大连 116024
Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel
WEN Donghui1, JIANG Beibei2, WANG Qing3(), LI Xiangwei1, ZHANG Peng1, ZHANG Shuyan1()
1.Centre of Excellence for Advanced Materials, Dongguan 523808, China
2.Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
3.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(3883 KB)   HTML
摘要: 

探讨了MoNb改性FeCrAl不锈钢(C35MN)在800℃、400 h时效过程中以及1000~1200℃、1 h退火处理后的组织演变及力学性能变化。结果表明,C35MN合金在800和1000℃具有优异的高温组织稳定性,然而在1100℃以上Laves相大量回溶至基体,晶粒尺寸迅速长大至310 μm;C35MN合金的组织稳定性由Laves相的热稳定性决定,而Laves相热稳定性又与其成分密切相关,形成Laves相的组元在bcc结构Fe基体中的固溶度越低,Laves相越稳定;晶粒尺寸显著影响C35MN合金的力学行为,当晶粒尺寸小于50 μm时,合金表现出韧性断裂特征,晶粒尺寸大于130 μm时则表现出脆性解理断裂特征。

关键词 燃料包壳材料FeCrAl不锈钢组织稳定性Laves相力学性能    
Abstract

MoNb-modified FeCrAl ferritic stainless steel (C35MN: Fe-13Cr-4.5Al-2Mo-1Nb, mass fraction, %) exhibits excellent comprehensive properties, including oxidation and corrosion resistance, as well as moderate mechanical properties, machinability, and neutron irradiation-resistance, making them potential accident-tolerant fuel (ATF) cladding materials for pressurized water reactors. However, the microstructural evolution and corresponding mechanical properties of C35MN alloys at the loss-of-coolant accident temperature have not been systematically studied. Herein, the microstructural evolution and mechanical properties of C35MN alloys during 400 h aging at 800oC and 1 h annealing at 1000-1200oC were systematically investigated. The alloy ingots were prepared by vacuum induction melting and cast into round bars, followed by 1150oC hot-forging, 800oC hot-rolling, and aging at 800oC for 400 h. The samples annealed at 1000-1200oC for 1 h were preaged at 800oC for 24 h. The C35MN alloy exhibited excellent microstructural stability at 800 and 1000oC, which is attributed to the precipitation of the Laves phase. The alloy showed a good combination of strength and ductility. However, when the annealing temperature increased above 1100oC, a large amount of the Laves phase dissolved into the ferritic matrix, resulting in the coarsening of the matrix grains. Annealing above 1200oC for 1 h, the grain size increased to 310 μm, severely degrading the mechanical property of the C35MN alloy below the requirement of ATF cladding materials. The microstructural stability of the C35MN alloy was influenced by the thermal stability of the Laves phase, which depends on the composition of the phase. The thermal stability of the Laves phase depends on the solid solubility of Laves phase forming elements in the ferritic matrix: the lower the solid solubility, the higher thermal stability of the Laves phase. The mechanical properties of C35MN were significantly affected by the grain size. The alloy exhibited ductile fracture when the grain size was less than 50 μm and brittle cleavage fracture when the grain size was above 130 μm.

Key wordsfuel cladding material    FeCrAl stainless steel    microstructural stability    Laves phase    mechanical property
收稿日期: 2020-12-30     
ZTFLH:  TG113.1  
基金资助:广东省基础与应用基础研究基金项目(2019A1515110051);广东省引进创新创业团队项目(2016ZT06G025)
通讯作者: 王清,张书彦     E-mail: wangq@dlut.edu.cn;shuyan.zhang@ceamat.com
Corresponding author: WANG Qing,ZHANG Shuyan     E-mail: wangq@dlut.edu.cn;shuyan.zhang@ceamat.com
作者简介: 张书彦,shuyan.zhang@ceamat.com,主要从事中子技术研究
王 清,wangq@dlut.edu.cn,主要从事多元复杂工程合金材料设计与研发的研究;
温冬辉,男,1990年生,博士

引用本文:

温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
Donghui WEN, Beibei JIANG, Qing WANG, Xiangwei LI, Peng ZHANG, Shuyan ZHANG. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. Acta Metall Sin, 2022, 58(7): 883-894.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2020.00533      或      https://www.ams.org.cn/CN/Y2022/V58/I7/883

CompositionCrAlMoNbMnSiSPFe
Nominal13.554.752.081.01----Bal.
Measured13.504.322.081.040.020.110.0040.006Bal.
表1  Fe-13Cr-4.5Al-2Mo-1Nb (C35MN)合金的名义成分和实际成分 (mass fraction / %)
图1  C35MN合金经过800℃、24 h时效处理后微观组织的OM和SEM像
图2  C35MN合金经过不同热处理后的XRD谱
图3  C35MN合金在800℃时效不同时间后微观组织的SEM像以及Laves相体积分数和尺寸变化曲线
图4  C35MN合金在800℃时效2和400 h后微观组织的OM像
图5  800℃、24 h时效后的C35MN合金分别经过1000、1100和1200℃退火1 h处理后微观组织的OM和SEM像
图6  C35MN合金析出相体积分数和晶粒尺寸随退火温度的变化曲线
图7  800℃、24 h时效后的C35MN合金经过1000℃、1 h退火处理后的TEM明场像和选区电子衍射(SAED)花样
图8  C35MN合金800℃、24 h时效后在不同温度下的工程应力-应变曲线及对应力学性能参数随温度变化
图9  C35MN合金经过800℃、24 h时效后在不同温度下的拉伸断口形貌及断后组织形貌
图10  800℃、24 h时效后的C35MN合金经过不同温度退火以及退火 + 再次800℃、24 h时效处理后的工程应力-应变曲线以及对应力学性能参数的变化
图11  C35MN合金在800℃时效不同时间和退火处理后的硬度

Temperature

oC

CompositionSolid solubility[29]
CrAlMoNbMoNb
80010.35.48.917.83.70.2
10009.74.48.120.48.60.6
11008.13.74.432.510.00.9
表2  不同温度热处理C35MN合金Laves相成分和Mo、Nb元素在铁素体中的固溶度 (atomic fraction / %)
图12  800℃、24 h时效后的C35MN合金经过不同温度退火以及退火+再次时效处理后室温拉伸断口形貌的SEM像
1 Hallstadius L, Johnson S, Lahoda E. Cladding for high performance fuel [J]. Prog. Nucl. Energy, 2012, 57: 71
doi: 10.1016/j.pnucene.2011.10.008
2 Rebak R B. Advanced steels for accident tolerant fuel cladding in current light water reactors [A]. Energy Materials 2014 [C]. New York: Springer, 2014: 433
3 Baba M. Fukushima accident: What happened? [J]. Radiat. Meas., 2013, 55: 17
doi: 10.1016/j.radmeas.2013.01.013
4 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
5 Bragg-Sitton S. Development of advanced accident-tolerant fuels for commercial LWRs [J]. Nucl. News, 2014, 57: 83
6 Robb K R. Analysis of the FeCrAl accident tolerant fuel concept benefits during BWR station blackout accidents [A]. 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics [C]. Chicago, IL, USA: Oak Ridge National Lab. (ORNL), 2015: 1183
7 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
8 Kaneda J, Kasahara S, Kuniya J, et al. General corrosion properties of titanium based alloys for the fuel claddings in the supercritical water-cooled reactor [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors [C]. Salt Lake City, UT: The Minerals, Metals & Materials Society, 2005: 1409
9 Opila E J. Volatility of common protective oxides in high-temperature water vapor: Current understanding and unanswered questions [J]. Mater. Sci. Forum, 2004, 461-464: 765
doi: 10.4028/www.scientific.net/MSF.461-464.765
10 Cheng T, Keiser J R, Brady M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure [J]. J. Nucl. Mater., 2012, 427: 396
doi: 10.1016/j.jnucmat.2012.05.007
11 Liu J K, Zhang X H, Yun D. A complete review and a prospect on the candidate materials for accident tolerant fuel claddings [J]. Mater. Rev., 2018, 32A: 1757
11 刘俊凯, 张新虎, 恽 迪. 事故容错燃料包壳候选材料的研究现状及展望 [J]. 材料导报, 2018, 32A: 1757
12 Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding [J]. J. Nucl. Mater., 2014, 448: 420
doi: 10.1016/j.jnucmat.2013.06.041
13 Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy, 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
14 Rebak R B. Alloy selection for accident tolerant fuel cladding in commercial light water reactors [J]. Metall. Mater. Trans., 2015, 2E: 197
15 Field K G, Snead M A, Yamamoto Y, et al. Handbook on the material properties of FeCrAl alloys for nuclear power production applications (FY18 Version: Revision 1) [R]. Oak Ridge, TN (United States): Oak Ridge National Lab. (ORNL), 2018
16 Unocic K A, Yamamoto Y, Pint B A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy [J]. Oxid. Met., 2017, 87: 431
doi: 10.1007/s11085-017-9745-1
17 Ejenstam J, Thuvander M, Olsson P, et al. Microstructural stability of Fe-Cr-Al alloys at 450-550oC [J]. J. Nucl. Mater., 2015, 457: 291
doi: 10.1016/j.jnucmat.2014.11.101
18 Capdevila C, Miller M K, Chao J. Phase separation kinetics in a Fe-Cr-Al alloy [J]. Acta Mater., 2012, 60: 4673
doi: 10.1016/j.actamat.2012.05.022
19 Edmondson P D, Briggs S A, Yamamoto Y, et al. Irradiation-enhanced α' precipitation in model FeCrAl alloys [J]. Scr. Mater., 2016, 116: 112
doi: 10.1016/j.scriptamat.2016.02.002
20 Gao S X, Li W J, Chen P, et al. Study on irradiation behavior of fuel rods with FeCrAl cladding [J]. Nucl. Power Eng., 2017, 38(5): 175
20 高士鑫, 李文杰, 陈 平 等. FeCrAl 包壳燃料棒辐照行为研究 [J]. 核动力工程, 2017, 38(5): 175
21 Yamamoto Y, Gussev M N, Kim B, et al. Optimized properties on base metal and thin-walled tube of Generation II ATF FeCrAl [R]. Oak Ridge, TN (United States): Oak Ridge National Lab. (ORNL), 2015
22 Morachevskii A G. Professor Gustav Tammann (To 140th birthday anniversary) [J]. Russ. J. Appl. Chem., 2001, 74: 1610
doi: 10.1023/A:1017420113016
23 Motta A T, Yilmazbayhan A, da Silva M J G, et al. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities [J]. J. Nucl. Mater., 2007, 371: 61
doi: 10.1016/j.jnucmat.2007.05.022
24 Yamamoto Y, Yang Y, Field K G, et al. Letter report documenting progress of second generation ATF FeCrAl alloy fabrication [R]. Oak Ridge, TN (United States): Oak Ridge National Lab. (ORNL), 2014
25 Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
26 Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys [J]. Acta Mater., 2018, 144: 716
doi: 10.1016/j.actamat.2017.11.027
27 Niu B, Wang Z H, Wang Q, et al. Dual-phase synergetic precipitation in Nb/Ta/Zr Co-modified Fe-Cr-Al-Mo alloy [J]. Intermetallics, 2020, 124: 106848
doi: 10.1016/j.intermet.2020.106848
28 Zheng J Y, Jia Y Z, Du P N, et al. Control of Laves precipitation in a FeCrAl-based alloy through severe thermomechanical processing [J]. Materials, 2019, 12: 2939
doi: 10.3390/ma12182939
29 Tang R Z, Tian R Z. Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University, 2009: 535
29 唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009: 535
[1] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[2] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[3] 储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
[4] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[5] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[6] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[7] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[8] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[9] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[10] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[11] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[12] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[13] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
[14] 曹富荣, 丁鑫, 项超, 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870.
[15] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.