|
|
激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能 |
王虎1,2, 赵琳1( ), 彭云1( ), 蔡啸涛1, 田志凌1 |
1.钢铁研究总院 焊接研究所 北京 100081 2.北华航天工业学院 材料工程学院 廊坊 065000 |
|
Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition |
WANG Hu1,2, ZHAO Lin1( ), PENG Yun1( ), CAI Xiaotao1, TIAN Zhiling1 |
1.Welding Research Institute, Central Iron & Steel Research Institute, Beijing 100081, China 2.College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China |
引用本文:
王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
Hu WANG,
Lin ZHAO,
Yun PENG,
Xiaotao CAI,
Zhiling TIAN.
Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. Acta Metall Sin, 2023, 59(2): 226-236.
1 |
Kesler M S, Goyel S, Ebrahimi F, et al. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr, Mo) alloys with γ + σ microstructure at ambient temperature[J]. J. Alloys Compd., 2017, 695: 2672
doi: 10.1016/j.jallcom.2016.11.181
|
2 |
Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling[J]. J. Alloys Compd., 2017, 695: 3495
doi: 10.1016/j.jallcom.2016.12.005
|
3 |
Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. J. Alloys Compd., 2018, 750: 617
doi: 10.1016/j.jallcom.2018.03.343
|
4 |
Yang J, Xiao S, Zhang Q K, et al. In-situ synthesis of Ti-Al intermetallic compounds coating on Ti alloy by magnetron sputtering deposition followed by vacuum annealing[J]. Vacuum, 2020, 172: 109060
doi: 10.1016/j.vacuum.2019.109060
|
5 |
Kurzina I A, Kozlov E V, Sharkeev Y P, et al. Influence of ion implantation on nanoscale intermetallic-phase formation in Ti-Al, Ni-Al and Ni-Ti systems[J]. Surf. Coat. Technol., 2007, 201: 8463
doi: 10.1016/j.surfcoat.2006.02.062
|
6 |
Zhao Y C, Liu K. Effect of CeO2 and Y2O3 on tribological properties of Ti-Al/WC cermet composite coatings[J]. Lubr. Eng., 2019, 44(7): 78
|
6 |
赵运才, 刘 克. CeO2和Y2O3对Ti-Al/WC金属陶瓷复合涂层摩擦学性能的影响[J]. 润滑与密封, 2019, 44(7): 78
|
7 |
Burkov A A, Chigrin P G. Synthesis of Ti-Al intermetallic coatings via electrospark deposition in a mixture of Ti and Al granules technique[J]. Surf. Coat. Technol., 2020, 387: 125550.
doi: 10.1016/j.surfcoat.2020.125550
|
8 |
Chang Z X, Wang W X, Ge Y Q, et al. Microstructure and mechanical properties of Ni-Cr-Si-B-Fe composite coating fabricated through laser additive manufacturing[J]. J. Alloys Compd., 2018, 747: 401
doi: 10.1016/j.jallcom.2018.02.296
|
9 |
Carrullo J C Z, Falcón J C P, Borrás V A. Influence of process parameters and initial microstructure on the oxidation resistance of Ti48Al2Cr2Nb coating obtained by laser metal deposition[J]. Surf. Coat. Technol., 2019, 358: 114
doi: 10.1016/j.surfcoat.2018.11.015
|
10 |
Cheng J, Zhu S Y, Qiao Z H, et al. Recent advances of the tribology research of TiAl based intermetallics[J]. Tribology, 2015, 35: 342
|
10 |
程 军, 朱圣宇, 乔竹辉 等. TiAl基金属间化合物的摩擦学研究进展[J]. 摩擦学学报, 2015, 35: 342
|
11 |
He X, Song R G, Kong D J. Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding[J]. Opt. Laser Technol., 2019, 112: 339
doi: 10.1016/j.optlastec.2018.11.037
|
12 |
Cheng J, Yu Y, Fu L C, et al. Effect of TiB2 on dry-sliding tribological properties of TiAl intermetallics[J]. Tribol. Int., 2013, 62: 91
doi: 10.1016/j.triboint.2013.02.006
|
13 |
Schubert W D, Neumeister H, Kinger G, et al. Hardness to toughness relationship of fine-grained WC-Co hardmetals[J]. Int. J. Refract. Met. Hard Mater., 1998, 16: 133
doi: 10.1016/S0263-4368(98)00028-6
|
14 |
Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: V. Thermodynamic description of the ternary system Al-B-Ti[J]. J. Alloys Compd., 2009, 474: 86
doi: 10.1016/j.jallcom.2008.06.128
|
15 |
Larson D J, Liu C T, Miller M K. Boron solubility and boride compositions in α2 + γ titanium aluminides[J]. Intermetallics, 1997, 5: 411
doi: 10.1016/S0966-9795(97)00016-2
|
16 |
Hyman M E, McCullough C, Levi C G, et al. Evolution of boride morphologies in TiAl-B alloys[J]. Metall. Trans., 1991, 22A: 1647
|
17 |
Li P T. The growth mechanisms and control of TiB2 and LaB6 in-situ synthesized in Al melts[D]. Jinan: Shandong University, 2013
|
17 |
李鹏廷. 铝溶体中原位生成TiB2与LaB6的生长机制及控制[D]. 济南: 山东大学, 2013
|
18 |
Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al-Ti[J]. J. Alloys Compd., 2008, 465: 64
doi: 10.1016/j.jallcom.2007.10.061
|
19 |
Zhang L, Su Y Q, Yang H M, et al. As-cast structure refinement of Ti-46Al alloy by hafnium and boron additions[J]. China Foundry, 2009, 6: 115
|
20 |
Han J C, Xiao S L, Tian J, et al. Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy[J]. Mater. Charact., 2015, 106: 112
doi: 10.1016/j.matchar.2015.05.020
|
21 |
Yang G Y, Liu Y, Wang Y, et al. Effects of trace B and Y elements on microstructures of cast Ti-Al-Nb-W alloy[J]. Chin. J. Nonferrous Met., 2011, 21: 777
|
21 |
杨广宇, 刘 咏, 王 岩 等. 微量B和Y对铸造Ti-Al-Nb-W合金显微组织的影响[J]. 中国有色金属学报, 2011, 21: 777
|
22 |
Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry[J]. Weld. World, 2017, 61: 883
doi: 10.1007/s40194-017-0495-0
|
23 |
Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing[J]. Sci. Technol. Adv. Mater., 2001, 2: 185
doi: 10.1016/S1468-6996(01)00047-X
|
24 |
Rong L, Huang J, Li Z G, et al. Microstructure and property of laser cladding Ni-based alloy coating reinforced by WC particles[J]. China Surf. Eng., 2010, 23(6): 40
|
24 |
戎 磊, 黄 坚, 李铸国 等. 激光熔覆WC颗粒增强Ni基合金涂层的组织与性能[J]. 中国表面工程, 2010, 23(6): 40
|
25 |
Ritchie R O. The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
26 |
Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions[J]. Wear, 1961, 4: 345
doi: 10.1016/0043-1648(61)90002-3
|
27 |
Moore M A, King F S. Abrasive wear of brittle solids[J]. Wear, 1980, 60: 123
doi: 10.1016/0043-1648(80)90253-7
|
28 |
Lu N. The three-dimension evaluation system establishment and detection method research of casting surface roughness[D]. Harbin: Harbin University of Science and Technology, 2014
|
28 |
卢 男. 铸造表面粗糙度三维评价体系建立及检测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|